43 research outputs found

    Array-Based ELISAs for High-Throughput Analysis of Human Cytokines

    No full text
    In this report, we describe the development of a mini-array system suitable for high-throughput quantification of proteins. This mini-array is a multiplexed, sandwich-type ELISA that measures the concentration of seven different human cytokines— TNF-α, IFNα, IFNγ, IL-1α, IL-1β, IL-6, and IL-10—from a single sample in each well of a 96-well plate. The mini-array is produced by spotting monoclonal antibodies (mAbs) in a 3 × 3 pattern in the bottom of the wells of 96-well polystyrene plates. Cytokines that are captured by the arrayed mAbs are detected by using biotinylated mAbs, followed by the addition of a streptavidin-horseradish peroxidase (HRP) conjugate and a chemiluminescent substrate. The light produced from the HRP-catalyzed oxidation of the substrate is measured at each spot in the array by imaging the entire plate with a commercially available CCD camera. Here, we demonstrate that these 96-well-plate format mini-arrays have performance characteristics that make them suitable for the high-throughput screening of anti-inflammatory compounds

    N-acetylcysteine and glutathione as inhibitors of tumor necrosis factor production

    No full text
    : TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF

    Chlorpromazine specifically inhibits peripheral and brain TNF production, and up-regulates IL-10 production, in mice.

    No full text
    We have previously shown that chlorpromazine (CPZ) inhibits tumour necrosis factor (TNF) production and protects against endotoxic shock in mice. In this paper we investigated the effect of pretreatment with CPZ, 4 mg/kg i.p. 30 min before, compared with dexamethasone (DEX; 3 mg/kg) on the induction of other endotoxin (lipopolysaccharide; LPS)-induced cytokines in the serum of mice, i.e. interleukin-1 alpha (IL-1 alpha), IL-6 and IL-10, and TNF. We also studied the effect of CPZ on serum and spleen-associated TNF. Both DEX and CPZ inhibited TNF production, whereas induction of IL-1 and IL-6 was inhibited by DEX but not by CPZ. DEX did not affect IL-10, while CPZ potentiated its induction. CPZ also inhibited spleen-associated TNF induction in LPS-treated mice, suggesting an effect on the synthesis of TNF. CPZ inhibited TNF induction by Gram-positive bacteria (heat-killed Staphylococcus epidermidis) and by anti-CD3 monoclonal antibodies. Intraperitoneal administration of CPZ also inhibited the induction of brain-associated TNF induced by intra-cerebroventricular injection of LPS. Therefore, CPZ is a more specific inhibitor of TNF production than DEX; in particular, CPZ increased the induction of IL-10, which is a 'protective' cytokine known to inhibit LPS toxicity and TNF production. CPZ inhibited TNF production in vivo, irrespective of the TNF stimulus used to induce TNF. Finally, CPZ did not induce the 'rebound' effect of DEX that, when given 24 hr before LPS, potentiates TNF production, but it did inhibit TNF production after 24 hr
    corecore