3,859 research outputs found
Kondo and Dicke effect in quantum-dots side coupled to a quantum wire
Electron tunneling through quantum-dots side coupled to a quantum wire, in
equilibrium and nonequilibrium Kondo regime, is studied. The mean-field
finite- slave-boson formalism is used to obtain the solution of the problem.
We have found that the transmission spectrum shows a structure with two
anti-resonances localized at the renormalized energies of the quantum dots. The
DOS of the system shows that when the Kondo correlations are dominant there are
two Kondo regimes with its own Kondo temperature. The above behavior of the DOS
can be explained by quantum interference in the transmission through the two
different resonance states of the quantum dots coupled to common leads. This
result is analogous to the Dicke effect in optics. We investigate the many body
Kondo states as a function of the parameters of the system.Comment: 5 figures. To appear in Phys. Rev.
Dynamic instability in resonant tunneling
We show that an instability may be present in resonant tunneling through a
quantum well in one, two and three dimensions, when the resonance lies near the
emitter Fermi level. A simple semiclassical model which simulates the resonance
and the projected density of states by a nonlinear conductor, the Coulomb
barrier by a capacitance, and the time evolution by an iterated map, is used.
The model reproduces the observed hysteresis in such devices, and exhibits a
series of bifurcations leading to fast chaotic current fluctuations.Comment: 7 pages, 2 figure
Bound states in the continuum: localization of Dirac-like fermions
We report the formation of bound states in the continuum for Dirac-like
fermions in structures composed by a trilayer graphene flake connected to
nanoribbon leads. The existence of this kind of localized states can be proved
by combining local density of states and electronic conductance calculations.
By applying a gate voltage, the bound states couple to the continuum, yielding
a maximum in the electronic transmission. This feature can be exploited to
identify bound states in the continuum in graphene-based structures.Comment: 7 pages, 5 figure
- …