5 research outputs found

    Effect of Porcine-Derived Collagen Membrane Crosslinking on Intraoral Soft Tissue Augmentation: A Canine Model

    No full text
    Peri-implant disease and gingival recession may be partially attributed to inadequate keratinized tissue. Soft tissue augmentation procedures utilizing non-autologous biomaterials, such as porcine-derived collagen membranes, have been gaining prominence and exogenous crosslinking is being actively investigated to improve the collagen membrane’s stability and potential for keratinized tissue gain. The aim of this preclinical study was to evaluate the performance of a novel, crosslinked porcine collagen membrane (ZdermTM, Osteogenics Biomedical, Lubbock, TX, USA) relative to an established, commercially available, non-crosslinked counterpart (Mucograft®, Geistlich Pharma North America Inc., Princeton, NJ, USA) in a canine mandibular model. Bilateral split-thickness mucosal defects were created in adult beagles (n = 17), with each site receiving one membrane. Qualitative and quantitative histomorphometric analyses of groups were performed after 4, 8, and 12 weeks of healing and compared to unoperated, positive controls from the same subject. No significant differences in membrane presence were observed between ZdermTM and Mucograft® at 4, 8, and 12 weeks of permitted healing (p > 0.05). Similarly, the average keratinized tissue (KT) length between ZdermTM and Mucograft® groups was statistically equivalent across all healing times (p > 0.05). However, qualitative histological evaluation revealed greater rete ridge morphology amongst defects treated with ZdermTM in comparison to Mucograft®. Nevertheless, both membranes exhibited excellent biocompatibility and are well-suited for soft tissue augmentation procedures in the oral cavity

    Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution

    No full text
    AbstractIonizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 – mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell – specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A – NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A – NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.</jats:p
    corecore