154 research outputs found

    Budget Processes: Theory and Experimental Evidence

    Get PDF
    This paper studies budget processes, both theoretically and experimentally. We compare the outcomes of bottom-up and top-down budget processes. It is often presumed that a top-down budget process leads to a smaller overall budget than a bottom-up budget process. Ferejohn and Krehbiel (1987) showed theoretically that this need not be the case. We test experimentally the theoretical predictions of their work. The evidence from these experiments lends strong support to their theory, both at the aggregate and the individual subject level

    The Banks set and the Uncovered Set in budget allocation problems

    Get PDF
    We examine how a society chooses to divide a given budget among various regions, projects or individuals. In particular, we characterize the Banks set and the Uncovered Set in such problems. We show that the two sets can be proper subsets of the set of all alternatives, and at times are very pointed in their predictions. This contrasts with well-known "chaos theorems," which suggest that majority voting does not lead to any meaningful predictions when the policy space is multidimensional

    The Calculus of Committee Composition

    Get PDF
    Modern institutions face the recurring dilemma of designing accurate evaluation procedures in settings as diverse as academic selection committees, social policies, elections, and figure skating competitions. In particular, it is essential to determine both the number of evaluators and the method for combining their judgments. Previous work has focused on the latter issue, uncovering paradoxes that underscore the inherent difficulties. Yet the number of judges is an important consideration that is intimately connected with the methodology and the success of the evaluation. We address the question of the number of judges through a cost analysis that incorporates the accuracy of the evaluation method, the cost per judge, and the cost of an error in decision. We associate the optimal number of judges with the lowest cost and determine the optimal number of judges in several different scenarios. Through analytical and numerical studies, we show how the optimal number depends on the evaluation rule, the accuracy of the judges, the (cost per judge)/(cost per error) ratio. Paradoxically, we find that for a panel of judges of equal accuracy, the optimal panel size may be greater for judges with higher accuracy than for judges with lower accuracy. The development of any evaluation procedure requires knowledge about the accuracy of evaluation methods, the costs of judges, and the costs of errors. By determining the optimal number of judges, we highlight important connections between these quantities and uncover a paradox that we show to be a general feature of evaluation procedures. Ultimately, our work provides policy-makers with a simple and novel method to optimize evaluation procedures

    Federalism as a Public Good

    Full text link
    This paper suggests that stabilizing federalism is like solving a public good provision problem. It reviews results in the public good provision literature that are relevant for federalism, and discusses the implications of these results for the institutional design of federalism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44798/1/10602_2005_Article_2235.pd

    Power and welfare in bargaining for coalition structure formation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-015-9310-8.We investigate a noncooperative bargaining game for partitioning n agents into non-overlapping coalitions. The game has n time periods during which the players are called according to an exogenous agenda to propose offers. With probability δ, the game ends during any time period t< n. If it does, the first t players on the agenda get a chance to propose but the others do not. Thus, δ is a measure of the degree of democracy within the game (ranging from democracy for δ= 0 , through increasing levels of authoritarianism as δ approaches 1, to dictatorship for δ= 1). We determine the subgame perfect equilibrium (SPE) and study how a player’s position on the agenda affects his bargaining power. We analyze the relation between the distribution of power of individual players, the level of democracy, and the welfare efficiency of the game. We find that purely democratic games are welfare inefficient and that introducing a degree of authoritarianism into the game makes the distribution of power more equitable and also maximizes welfare. These results remain invariant under two types of player preferences: one where each player’s preference is a total order on the space of possible coalition structures and the other where each player either likes or dislikes a coalition structure. Finally, we show that the SPE partition may or may not be core stable

    The Political Economy of Taxation: Positive and Normative Analysis when Collective Choice Matters

    Full text link
    corecore