151 research outputs found
An improved high throughput protein-protein interaction assay for nuclear hormone receptors
The Glutathione-S-Transferase (GST) βpulldownβ assay has been used extensively to assay protein interactions in vitro. This methodology has been especially useful for investigating the interactions of nuclear hormone receptors with a wide variety of their interacting partners and coregulatory proteins. Unfortunately, the original GST-pulldown technique relies on multiple binding, washing and elution steps performed in individual microfuge tubes, and requires repeated centrifugation, aspiration, and suspension steps. This type of batch processing creates a significant liquid handling bottleneck, limiting the number of sample points that can be incorporated into one experiment and producing inherently less efficient washing and elution than would a flow-through methodology. In this manuscript, we describe the adaptation of this GST-pulldown assay to a 96-well filter plate format. The use of a multi-well filter plate makes it possible to assay more samples in significantly less time using less reagents and more efficient sample processing than does the traditional single tube assay
On 1-factorizations of Bipartite Kneser Graphs
It is a challenging open problem to construct an explicit 1-factorization of
the bipartite Kneser graph , which contains as vertices all -element
and -element subsets of and an edge between any
two vertices when one is a subset of the other. In this paper, we propose a new
framework for designing such 1-factorizations, by which we solve a nontrivial
case where and is an odd prime power. We also revisit two classic
constructions for the case --- the \emph{lexical factorization} and
\emph{modular factorization}. We provide their simplified definitions and study
their inner structures. As a result, an optimal algorithm is designed for
computing the lexical factorizations. (An analogous algorithm for the modular
factorization is trivial.)Comment: We design the first explicit 1-factorization of H(2,q), where q is a
odd prime powe
Corepressors: custom tailoring and alterations while you wait
A diverse cadre of metazoan transcription factors mediate repression by recruiting protein complexes containing the SMRT (silencing mediator of retinoid and thyroid hormone receptor) or N-CoR (nuclear receptor corepressor) corepressors. SMRT and N-CoR nucleate the assembly of still larger corepressor complexes that perform the specific molecular incantations necessary to confer transcriptional repression. Although SMRT and N-CoR are paralogs and possess similar molecular architectures and mechanistic strategies, they nonetheless exhibit distinct molecular and biological properties. It is now clear that the functions of both SMRT and N-CoR are further diversified through alternative mRNA splicing, yielding a series of corepressor protein variants that participate in distinctive transcription factor partnerships and display distinguishable repression properties. This review will discuss what is known about the structure and actions of SMRT, N-CoR, and their splicing variants, and how alternative splicing may allow the functions of these corepressors to be adapted and tailored to different cells and to different developmental stages
Repositioning the Catalytic Triad Aspartic Acid of Haloalkane Dehalogenase: Effects on Stability, Kinetics, and Structure
Haloalkane dehalogenase (DhlA) catalyzes the hydrolysis of haloalkanes via an alkyl-enzyme intermediate. The covalent intermediate, which is formed by nucleophilic substitution with Asp124, is hydrolyzed by a water molecule that is activated by His289. The role of Asp260, which is the third member of the catalytic triad, was studied by site-directed mutagenesis. Mutation of Asp260 to asparagine resulted in a catalytically inactive D260N mutant, which demonstrates that the triad acid Asp260 is essential for dehalogenase activity. Furthermore, Asp260 has an important structural role, since the D260N enzyme accumulated mainly in inclusion bodies during expression, and neither substrate nor product could bind in the active-site cavity. Activity for brominated substrates was restored to D260N by replacing Asn148 with an aspartic or glutamic acid. Both double mutants D260N+N148D and D260N+N148E had a 10-fold reduced kcat and 40-fold higher Km values for 1,2-dibromoethane compared to the wild-type enzyme. Pre-steady-state kinetic analysis of the D260N+N148E double mutant showed that the decrease in kcat was mainly caused by a 220-fold reduction of the rate of carbon-bromine bond cleavage and a 10-fold decrease in the rate of hydrolysis of the alkyl-enzyme intermediate. On the other hand, bromide was released 12-fold faster and via a different pathway than in the wild-type enzyme. Molecular modeling of the mutant showed that Glu148 indeed could take over the interaction with His289 and that there was a change in charge distribution in the tunnel region that connects the active site with the solvent. On the basis of primary structure similarity between DhlA and other Ξ±/Ξ²-hydrolase fold dehalogenases, we propose that a conserved acidic residue at the equivalent position of Asn148 in DhlA is the third catalytic triad residue in the latter enzymes.
Fungal diversity associated to the olive moth, prays oleae Bernard : a survey for potential entomopathogenic fungi
Olive production is one of the main agricultural activities in Portugal. In the region of TrΓ‘s-os-Montes this crop has been considerably affected by Prays oleae. In order to evaluate the diversity of fungi on P. oleae population of TrΓ‘s-os-Montes olive orchards, larvae and pupae of the three annual generations (phyllophagous, antophagous and carpophagous) were collected and evaluated for fungal growth on their surface. From the 3828 larvae and pupae, a high percentage of individuals exhibited growth of a fungal agent (40.6%), particularly those from the phyllophagous generation. From all the moth generations, a total of 43 species from 24 genera were identified, but the diversity and abundance of fungal species differed between the three generations. Higher diversity was found in the carpophagous generation, followed by the antophagous and phyllophagous generations. The presence of fungi displaying entomopathogenic features was highest in the phyllophagous larvae and pupae, being B. bassiana the most abundant taxa. The first report of B. bassiana presence on P. oleae could open new strategies for the biocontrol of this major pest in olive groves, since the use of an already adapted species increases the guarantee of success of a biocontrol approach. The identification of antagonistic fungi able to control agents that cause major olive diseases, such as Verticillium dahliae, will benefit future biological control approaches for limiting this increasingly spreading pathogen.This work was supported by Science and Technology Foundation (Fundação para a CiΓͺncia e Tecnologia β FCT) project PTDC/AGR-AAM/102600/2008 βEntomopathogenic fungi associated to olive pests: isolation, characterization and selection for biological controlβ. The first author is grateful to the Science and Technology Foundation for the PhD grant SFRH/BD/44265/2008
Deducing the Temporal Order of Cofactor Function in Ligand-Regulated Gene Transcription: Theory and Experimental Verification
Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available
Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration
Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-ΞΊB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy
- β¦