4 research outputs found

    Ambipolar Organic Field-Effect Transistors Based on Indigo Derivatives

    Get PDF
    In order to improve the ambipolar performance of indigo-based semiconductors, we have investigated halogen-substituted (1 - 4) and phenyl-substituted (5) indigo derivatives at the 5-position. We show that introduction of iodine atoms, namely 5,5'-diiodoindigo (4), leads to the strong halogen-halogen interaction (iodine-iodine interaction) that gives a significant effect on the molecular packing. Thanks to the supramolecular network coming from the extra iodine-iodine interaction, the molecules are arranged approximately perpendicular to the substrate in the thin film. This results in remarkable transistor performance of the maximum hole and electron mobilities (µh/µe) = 0.42/0.85 cm2V–1s–1, which are one of the highest among small-molecule ambipolar organic transistors. Furthermore, introducing phenyl groups, 5 improves the transistor performances up to the maximum mobilities µh/µe = 0.56/0.95 cm2V–1s–1. We have found that the phenyl groups destroy the standard molecular packing of indigo to achieve a unique structure that is a hybrid of the herringbone and brickwork structures
    corecore