4,100 research outputs found
A Gradual Process for Integrating E-learning in a Higher Education Institute
In: A.J. Kallenberg and M.J.J.M. van de Ven (Eds), 2002, The New Educational Benefits of ICT in Higher Education: Proceedings. Rotterdam: Erasmus Plus BV, OECR
ISBN 90-9016127-9We describe an incremental process for integrating E-learning in a higher education institute. Our basic assumption is that the burden of integrating E-learning lies mainly on the shoulders of the teachers. We suggest a process based on XML technologies that enables the teachers to: (1) separate content from presentation and concentrate on content (2) develop learning materials incrementally and implement easily at each stage (3) reuse any learning materials they have already prepared (4) reuse learning materials prepared by other teachers. In this paper we describe the process along with the various roles of each of the following: the technology, the support technical team, the individual teacher and the evolving community of practice
Timing of hydrogen cyanamide application to grapevine buds
One major factor limiting the application of hydrogen cyanamide (H<sub>2</sub>CN<sub>2</sub>) is the difficulty in deciding when to apply, since mistiming may lead to bud and crop damage. Since an effective method for monitoring the developmental stage of dormant buds is not yet available, minimizing such a risk involves the regional evaluation of application timing. For three successive years, several H<sub>2</sub>CN<sub>2</sub> application dates were evaluated in cv. Perlette vineyards in the Jordan valley in Israel. The level and uniformity of bud break did not differ significantly among the application dates tested. However, major effects of the application date on cluster number, cluster size and yield were found. The sensitivity of the reproductive meristem to H<sub>2</sub>CN<sub>2</sub> is discussed
Optimal ratio between phase basis and bit basis in QKD
In the original BB84 protocol, the bit basis and the phase basis are used
with equal probability. Lo et al (J. of Cryptology, 18, 133-165 (2005))
proposed to modify the ratio between the two bases by increasing the final key
generation rate. However, the optimum ratio has not been derived. In this
letter, in order to examine this problem, the ratio between the two bases is
optimized for exponential constraints given Eve's information
distinguishability and the final error probability
The Entropy of a Binary Hidden Markov Process
The entropy of a binary symmetric Hidden Markov Process is calculated as an
expansion in the noise parameter epsilon. We map the problem onto a
one-dimensional Ising model in a large field of random signs and calculate the
expansion coefficients up to second order in epsilon. Using a conjecture we
extend the calculation to 11th order and discuss the convergence of the
resulting series
Efficient UC Commitment Extension with Homomorphism for Free (and Applications)
Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values.
In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment. We obtain amortized linear computational complexity in the length of the input messages and rate 1.
Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters.
While the previously best constructions use UC oblivious transfer as the main building block, our constructions only require extractable commitments and PRGs, achieving better concrete efficiency and offering new insights into the sufficient conditions for obtaining homomorphic UC commitments.
Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic.
These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments.
Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge
Universally Composable Quantum Multi-Party Computation
The Universal Composability model (UC) by Canetti (FOCS 2001) allows for
secure composition of arbitrary protocols. We present a quantum version of the
UC model which enjoys the same compositionality guarantees. We prove that in
this model statistically secure oblivious transfer protocols can be constructed
from commitments. Furthermore, we show that every statistically classically UC
secure protocol is also statistically quantum UC secure. Such implications are
not known for other quantum security definitions. As a corollary, we get that
quantum UC secure protocols for general multi-party computation can be
constructed from commitments
Noisy Preprocessing and the Distillation of Private States
We provide a simple security proof for prepare & measure quantum key
distribution protocols employing noisy processing and one-way postprocessing of
the key. This is achieved by showing that the security of such a protocol is
equivalent to that of an associated key distribution protocol in which, instead
of the usual maximally-entangled states, a more general {\em private state} is
distilled. Besides a more general target state, the usual entanglement
distillation tools are employed (in particular, Calderbank-Shor-Steane
(CSS)-like codes), with the crucial difference that noisy processing allows
some phase errors to be left uncorrected without compromising the privacy of
the key.Comment: 4 pages, to appear in Physical Review Letters. Extensively rewritten,
with a more detailed discussion of coherent --> iid reductio
Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds
The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols' physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol–cloud interaction.
Twelve years of radiosonde measurements (June–August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol–cloud interactions
- …