10 research outputs found

    Roles of nitric oxide and oxidative stress in the regulation of blood pressure and renal function in prehypertensive Ren-2 transgenic rats

    No full text
    Aims: The present study was performed to evaluate the role of nitric oxide (NO) and its interaction with superoxide anion (O2-) in the regulation of blood pressure (BP) and renal function during the developmental phase of hypertension in Ren-2 transgenic rats (TGR). The first aim was to compare BP and renal functional responses to acute NO synthase (NOS) inhibition achieved by intravenous (i.v.) infusion of Nω-nitro-L-arginine- methyl ester (L-NAME) in prehypertensive heterozygous TGR and in transgene-negative Hannover Sprague-Dawley (HanSD) rats. The second aim was to evaluate whether scavenging of O2- by infusion of the superoxide dismutase mimetic tempol increases NO bioavailability which therefore should augment BP and renal functional responses to L-NAME. Methods: Rats were anesthetized, prepared for clearance experiments and BP and renal functional responses were evaluated in response to i.v. L-NAME administration (20 μg·100 g-1·min-1) without or with tempol pretreatment (i.v., 300 μg·100 g-1·min -1). In renal cortical tissue, nitrotyrosine protein expression was assessed by immunoblotting as marker of O2- production and urinary 8-epi-PGF2α excretion as marker of intrarenal oxidative stress was assessed by enzyme immunoassay. Results: BP, glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion were similar in TGR and HanSD. L-NAME infusion induced greater increases in BP in TGR than in HanSD (+42 ± 4 vs. +25 ± 3 mm Hg, p < 0.05). In the absence of a significant change in GFR, L-NAME caused similar decreases in RPF (-32 ± 6 and -25 ± 4%, p < 0.05) in TGR and HanSD. Despite significantly higher renocortical expression of nitrotyrosine and urinary 8-epi-PGF2α excretion in TGR than in HanSD, pretreatment with tempol did not augment the rise in BP and the decrease in RPF induced by L-NAME. Conclusions: The greater BP response to L-NAME in TGR suggests that prehypertensive TGR exhibit an enhanced NO activity in the systemic vasculature as compared with HanSD. Despite increased intrarenal oxidative stress in TGR, the dependency of the intrarenal vascular tone on NO appears to be similar in TGR and HanSD. The lack of a compensatory increase in renal NO activity may partially account for the enhanced renal vascular response to ANG II present in TGR. Copyrigh

    Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension

    No full text
    OBJECTIVE: Recent studies have shown that the heptapeptide angiotensin-(1-7) [Ang-(1-7)] exerts important vasoactive actions and can act as an endogenous physiological antagonist of angiotensin II (Ang II) within the renin-angiotensin system (RAS). The present study was performed to evaluate the effects, first, of chronic increases of Ang-(1-7) levels, second, of [7-D-Ala], an Ang-(1-7) receptor antagonist, and, third, of an angiotensin-converting enzyme 2 (ACE2) inhibitor on the course of hypertension and of renal function of the nonclipped kidney in two-kidney, one-clip (2K1C) Goldblatt hypertensive rats. METHODS: Blood pressure (BP) was monitored by radiotelemetry. Elevation of the effect of circulating Ang-(1-7) levels was achieved either by chronic subcutaneous infusion of Ang-(1-7) through osmotic minipumps or by employing transgenic rats that express an Ang-(1-7)-producing fusion protein [Ang-(1-7)TGR+/+] (and its control Ang-(1-7)TGR-/-). [7-D-Ala] was also infused subcutaneously and the ACE2 inhibitor was administrated in drinking water. On day 25 after clipping, rats were anesthetized and renal function was evaluated. RESULTS: Chronic infusion of Ang-(1-7) did not modify the course of 2K1C hypertension and did not alter renal function as compared with saline vehicle-infused 2K1C rats. Chronic infusion of [7-D-Ala] or treatment with the ACE2 inhibitor worsened the course of hypertension and elicited decreases in renal hemodynamics. [Ang-(1-7)TGR+/+] and [Ang-(1-7)TGR-/-] rats exhibited a similar course of hypertension. CONCLUSION: The present data support the notion that Ang-(1-7) serves as an important endogenous vasodilator and natriuretic agent and its deficiency might contribute to the acceleration of 2K1C Goldblatt hypertension

    Blockade of endothelin receptors attenuates end-organ damage in homozygous hypertensive Ren-2 transgenic rats

    No full text
    Background/Aims: A growing body of evidence suggests that the interplay between the endothelin (ET) and the renin-angiotensin systems (RAS) plays an important role in the development of the malignant phase of hypertension. The present study was performed to evaluate the role of an interaction between ET and RAS in the development of hypertension and hypertension-associated end-organ damage in homozygous male transgenic rats harboring the mouse Ren-2 renin gene (TGRs) under conditions of normal-salt (NS, 0.45% NaCl) and high-salt (HS, 2% NaCl) intake. Methods: Twenty-eight-day-old homozygous male TGRs and age-matched transgenenegative male normotensive Hannover Sprague-Dawley (HanSD) rats were randomly assigned to groups with NS or HS intake. Nonselective ET A/B receptor blockade was achieved with bosentan (100 mg/kg/day). Systolic blood pressure (BP) was measured in conscious animals by tail plethysmography. Rats were placed into metabolic cages to determine proteinuria and clearance of endogenous creatinine. At the end of the experiment the final arterial BP was measured directly in anesthetized rats. Kidneys were taken for morphological examination. Results: All male HanSD fed either the NS or HS diet exhibited a 100% survival rate until 180 days of age (end of experiment). The survival rate in untreated homozygous male TGRs fed the NS diet was 41%, which was markedly improved by treatment with bosentan to 88%. The HS diet reduced the survival rate in homozygous male TGRs to 10%. The survival rate in homozygous male TGRs on the HS diet was significantly improved by bosentan to 69%. Treatment with bosentan did not influence either the course of hypertension or the final levels of BP in any of the experimental groups of HanSD rats or TGRs. Although the ET-1 content in the renal cortex did not dif-fer between HanSD rats and TGRs, ET-1 in the left heart ventricle of TGRs fed the HS diet was significantly higher compared with all other groups. Administration of bosentan to homozygous male TGRs fed either the NS or HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Conclusions: Our data show that nonselective ET A/B receptor blockade markedly improves the survival rate and ameliorates end-organ damage in homozygous male TGRs without significantly lowering BP

    Chronic endothelin receptor blockade reduces end-organ damage independently of blood pressure effects in salt-loaded heterozygous Ren-2 transgenic rats

    No full text
    The present study was performed to evaluate the role of an interaction between the endothelin (ET) and the renin-angiotensin systems (RAS) in the development and maintenance of hypertension and in hypertension-associated end-organ damage in heterozygous male and female transgenic rats harboring the mouse Ren-2 renin gene (TGR). Twenty-eight days old heterozygous TGR and age-matched transgene-negative normotensive Hannover Sprague-Dawley rats (HanSD) were randomly assigned to groups with normal-salt (NS) or high-salt (HS) intake. Nonselective ET A/ET B receptor blockade was achieved with bosentan (100 mg.kg -1.day -1). All male and female HanSD as well as heterozygous TGR on NS exhibited 100% survival rate until 180 days of age (end of experiment). HS diet in heterozygous TGR induced a transition from benign to malignant phase hypertension. The survival rates in male and in female heterozygous TGR on the HS diet were 46% and 80%, respectively, and were significantly improved by administration of bosentan to 76% and 97%, respectively. Treatment with bosentan did not influence either the course of hypertension (measured by plethysmography in conscious animals) or the final levels of blood pressure (measured by a direct method in anesthetized rats) in any of the experimental groups of HanSD or TGR. Administration of bosentan in heterozygous TGR fed the HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Our data show that the ET receptor blockade markedly improves the survival rate and ameliorates end-organ damage in heterozygous TGR exposed to HS diet. These findings indicate that the interaction between the RAS and ET systems plays an important role in the development of hypertension-associated end-organ damage in TGR exposed to salt-loading

    Knockout of angiotensin 1-7 receptor Mas worsens the course of two-kidney, one-clip Goldblatt hypertension: roles of nitric oxide deficiency and enhanced vascular responsiveness to angiotensin II

    No full text
    Aims: The present study was performed to evaluate the effects of target disruption of the G-protein-coupled receptor Mas for angiotensin 1-7 [Ang(1-7)] in knockout mice on the course of two-kidney, one-clip (2K1C) Goldblatt hypertension. Methods: Knockout and wild-type mice underwent clipping of one renal artery. Blood pressure (BP) was monitored by radiotelemetry. The mice were either untreated or chronically treated with the superoxide (O(2)(-)) scavenger tempol (400 mg/l) or the inhibitor of NADPH oxidase apocynin (1 g/l) administered in drinking water. Results: Knockout mice responded to clipping by accelerated increases in BP and the final BP was significantly higher than that in wild-type mice. Chronic treatment with tempol or apocynin elicited similar antihypertensive effects in 2K1C/knockout as in 2K1C/wild-type mice. Acute nitric oxide synthase inhibition caused greater BP increases in 2K1C/wild-type than in 2K1C/knockout mice. Conclusion: Our present findings support the notion that the angiotensin-converting enzyme 2-Ang(1-7)-Mas axis serves as an important endogenous physiological counterbalancing mechanism that partially attenuates the hypertensinogenic actions of the activated renin-angiotensin system. The impairment in this axis may contribute to the deterioration of the course of 2K1C Goldblatt hypertension

    Endogenous Aldosterone Contributes to Acute Angiotensin II-Stimulated Plasminogen Activator Inhibitor-1 and Preproendothelin-1 Expression in Heart But Not Aorta

    No full text
    To test the hypothesis that angiotensin (Ang) II induces profibrotic gene expression through endogenous aldosterone, we measured the effect of 4 h infusion (600 ng/kg · min) of Ang II on tissue mRNA expression of plasminogen activator inhibitor 1 (PAI-1), preproendothelin-1 (ppET-1), TGF-β, and osteopontin in wild-type (WT), aldosterone synthase-deficient (AS−/−), and AS−/− mice treated with aldosterone (either 500 ng/d for 7 d or 250 ng as a concurrent 4 h infusion). Ang II increased aldosterone in WT (P < 0.001) but not in AS−/− mice. Aldosterone (7 d) normalized basal aldosterone concentrations in AS−/− mice; however, there was no further effect of Ang II on aldosterone (P = NS). Basal cardiac and aortic PAI-1 and ppET-1 expression were similar in WT and AS−/− mice. Ang II-stimulated PAI-1 (P < 0.001) and ppET-1 expression (P = 0.01) was diminished in the heart of AS−/− mice; treatment with aldosterone for 4 h or 7 d restored PAI-1 and ppET-1 mRNA responsiveness to Ang II in the heart. Ang II increased PAI-1 (P = 0.01) expression in the aorta of AS−/− as well as WT mice. In the kidney, basal PAI-1, ppET-1, and TGF-β mRNA expression was increased in AS−/− compared with WT mice and correlated with plasma renin activity. Ang II did not stimulate osteopontin or TGF-β expression in the heart or kidney. Endogenous aldosterone contributes to the acute stimulatory effect of Ang II on PAI-1 and ppET-1 mRNA expression in the heart; renin activity correlates with basal profibrotic gene expression in the kidney

    Reversal of proteinuric renal disease and the emerging role of endothelin

    Full text link
    Proteinuria is a major long-term clinical consequence of diabetes and hypertension, conditions that lead to progressive loss of functional renal tissue and, ultimately, end-stage renal disease. Proteinuria is also a strong predictor of cardiovascular events. Convincing preclinical and clinical evidence exists that proteinuria and the underlying glomerulosclerosis are reversible processes. This Review outlines the mechanisms involved in the development of glomerulosclerosis-particularly those responsible for podocyte injury-with an emphasis on the potential capacity of endothelin receptor blockade to reverse this process. There is strong evidence that endothelin-1, a peptide with growth-promoting and vasoconstricting properties, has a central role in the pathogenesis of proteinuria and glomerulosclerosis, which is mediated via activation of the ET(A) receptor. Several antiproteinuric drugs, including angiotensin-converting-enzyme inhibitors, angiotensin receptor antagonists, statins and certain calcium channel blockers, inhibit the formation of endothelin-1. Preclinical studies have demonstrated that endothelin receptor antagonists can reverse proteinuric renal disease and glomerulosclerosis, and preliminary studies in humans with renal disease have shown that these drugs have remarkable antiproteinuric effects that are additive to those of standard antiproteinuric therapy. Additional clinical studies are needed
    corecore