8 research outputs found

    >

    No full text

    >

    No full text

    >

    No full text

    Acoustic system for the estimation of the temporary blood chamber volume of the POLVAD heart supporting prosthesis

    No full text
    Abstract Background The paper presents a newly researched acoustic system for blood volume measurements for the developed family of Polish ventricular assist devices. The pneumatic heart-supporting devices are still the preferred solution in some cases, and monitoring of their operation, especially the temporary blood volume, is yet to be solved. Methods The prototype of the POLVAD-EXT prosthesis developed by the Foundation of Cardiac Surgery Development, Zabrze, Poland, is equipped with the newly researched acoustic blood volume measurement system based on the principle of Helmholtz’s acoustic resonance. The results of static volume measurements acquired using the acoustic sensor were verified by measuring the volume of the liquid filling the prosthesis. Dynamic measurements were conducted on the hybrid model of the human cardiovascular system at the Foundation, with the Transonic T410 (11PLX transducer - 5% uncertainty) ultrasound flow rate sensor, used as the reference. Results The statistical analysis of a series of static tests have proved that the sensor solution provides blood volume measurement results with uncertainties (understood as a standard mean deviation) of less than 10%. Dynamic tests show a high correlation between the results of the acoustic system and those obtained by flow rate measurements using an ultrasound transit time type sensor. Conclusions The results show that noninvasive, online temporary blood volume measurements in the POLVAD-EXT prosthesis, making use of the newly developed acoustic system, provides accurate static and dynamic measurements results. Conducted research provides the preliminary view on the possibility of reducing the additional sensor chamber volume in future.</p

    >

    No full text

    The 8AE-PD computer measurement system for registration and analysis of acoustic emission signals generated by partial discharges in oil power transformers

    No full text
    A computer measurement system, designed and built by authors, dedicated to location and description of partial discharges (PD) in oil power transformers examined by means of the acoustic emission (AE) method is presented. The measurement system is equipped with 8 measurement channels and ensures: monitoring of signals, registration of data in real time within a band of 25-1000 kHz in laboratory and real conditions, basic and advanced analysis of recorded signals. The basic analysis carried out in the time, frequency and time-frequency domains deals with general properties of the AE signals coming from PDs. The advanced analysis, performed in the discrimination threshold domain, results in identification of signals coming from different acoustic sources as well as location of these sources in the examined transformers in terms of defined by authors descriptors and maps of these descriptors on the side walls of the tested transformer tank. Examples of typical results of laboratory tests carried out with the use of the built-in measurement system are presented

    Optical diagnostic system for visualization subcutaneous blood vessels

    No full text
    The paper presents a research concerning the issue of visualization of blood vessels in the human body. In the initial phase of the investigations the focus was on understanding the optical properties of human body tissues. Optical transmittance of human skin was measured. Skin transmittance reaches the maximum at around 670–850 nm and 970–1100 nm. The optimal wavelength suitable for work in reflected and transmitted light was chosen. It was based on extracting blood vessels from the image for using them further in a developed system. A unique measuring system with an integrated illuminator and highly sensitive light detectors for medical imaging and stereoscopic observation was created. The high usable value of the developed system was largely gained by the original numerical program for development of measurement results. The elaborated system of blood vessels’ visualization is a mobile device. It was tested for imaging subcutaneous blood vessels. Three-dimensional observation of circulation and microcirculation in subcutaneous breast tissues is possible. Practical tests of the elaborated device for blood vessels’ medical stereoscopic observations were presented. Tests at a wavelength of 850 nm were performed. It is planned to conduct patient tests in the future at the Maria Skłodowska-Curie Institute - Oncology Center (MSCI), the Branch in Gliwice, Poland

    Fiber optic humidity sensor based on silk fibroin interference films

    No full text
    The article presents an inexpensive and simple method of fiber optic interference relative humidity (RH) sensors based on silk fibroin (SF) films. The sensors were made on standard multimode telecommunications optical fibers using dip-coating method and examined using broadband light sources. The measuring stand at which the basic sensor parameters were measured and the measured parameters were presented
    corecore