14 research outputs found

    The diagnostic value of endoscopy and Helicobacter pylori tests for peptic ulcer patients in late post-treatment setting

    Get PDF
    BACKGROUND: Guidelines for management of peptic ulcer patients after the treatment are largely directed to detection of H. pylori infection using only non-invasive tests. We compared the diagnostic value of non-invasive and endoscopy based H. pylori tests in a late post-treatment setting. METHODS: Altogether 34 patients with dyspeptic complaints were referred for gastroscopy 5 years after the treatment of peptic ulcer using a one-week triple therapy scheme. The endoscopic and histologic findings were evaluated according to the Sydney classification. Bacteriological, PCR and cytological investigations and (13)C-UBT tests were performed. RESULTS: Seventeen patients were defined H. pylori positive by (13)C-UBT test, PCR and histological examination. On endoscopy, peptic ulcer persisted in 4 H. pylori positive cases. Among the 6 cases with erosions of the gastric mucosa, only two patients were H. pylori positive. Mucosal atrophy and intestinal metaplasia were revealed both in the H. pylori positive and H. pylori negative cases. Bacteriological examination revealed three clarithromycin resistant H. pylori strains. Cytology failed to prove validity for diagnosing H. pylori in a post-treatment setting. CONCLUSIONS: In a late post-treatment setting, patients with dyspepsia should not be monitored only by non-invasive investigation methods; it is also justified to use the classical histological evaluation of H. pylori colonisation, PCR and bacteriology as they have shown good concordance with (13)C-UBT. Moreover, endoscopy and histological investigation of a gastric biopsy have proved to be the methods with an additional diagnostic value, providing the physician with information about inflammatory, atrophic and metaplastic lesions of the stomach in dyspeptic H. pylori positive and negative patients. Bacteriological methods are suggested for detecting the putative antimicrobial resistance of H. pylori, aimed at successful eradication of infection in persistent peptic ulcer cases

    13[C]-Urea Breath Test as a Novel Point-of-Care Biomarker for Tuberculosis Treatment and Diagnosis

    Get PDF
    BACKGROUND: Pathogen-specific metabolic pathways may be detected by breath tests based on introduction of stable isotopically-labeled substrates and detection of labeled products in exhaled breath using portable infrared spectrometers. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether mycobacterial urease activity could be utilized in such a breath test format as the basis of a novel biomarker and diagnostic for pulmonary TB. Sensitized New-Zealand White Rabbits underwent bronchoscopic infection with either Mycobacterium bovis or Mycobacterium tuberculosis. Rabbits were treated with 25 mg/kg of isoniazid (INH) approximately 2 months after infection when significant cavitary lung pathology was present. [(13)C] urea was instilled directly into the lungs of intubated rabbits at selected time points, exhaled air samples analyzed, and the kinetics of delta(13)CO(2) formation were determined. Samples obtained prior to inoculation served as control samples for background (13)CO(2) conversion in the rabbit model. (13)CO(2), from metabolic conversion of [(13)C]-urea by mycobacterial urease activity, was readily detectable in the exhaled breath of infected rabbits within 15 minutes of administration. Analyses showed a rapid increase in the rate of (13)CO(2) formation both early in disease and prior to treatment with INH. Following INH treatment, all evaluable rabbits showed a decrease in the rate of (13)CO(2) formation. CONCLUSIONS/SIGNIFICANCE: Urea breath testing may provide a useful diagnostic and biomarker assay for tuberculosis and for treatment response. Future work will test specificity for M. tuberculosis using lung-targeted dry powder inhalation formulations, combined with co-administering oral urease inhibitors together with a saturating oral dose of unlabeled urea, which would prevent the delta(13)CO(2) signal from urease-positive gastrointestinal organisms
    corecore