6 research outputs found

    Insulin sensitivity and fat mass in young male sedentary adults

    Get PDF
    We live in an obesogenic environment, spending a lot of time sitting neglecting physical activity. This study aims to determine the impact of a sedentary lifestyle on insulin sensitivity by comparing insulin sensitivity of healthy athletes and sedentary subjects. Twelve athletes and 12 sedentary subjects underwent a two-step hyperinsulinemic euglycemic clamp test to assess insulin sensitivity and a DEXA scan to assess body fat mass. Insulin sensitivity was significantly lower in sedentary subjects (p=0.009) and fat mass negatively correlated with insulin sensitivity (r=-0.57, p=0.005). This study shows that healthy sedentary subjects have an impaired insulin metabolism compared to trained athletes

    L-carnitine infusion does not alleviate lipid-induced insulin resistance and metabolic inflexibility

    No full text
    BackgroundLow carnitine status may underlie the development of insulin resistance and metabolic inflexibility. Intravenous lipid infusion elevates plasma free fatty acid (FFA) concentration and is a model for simulating insulin resistance and metabolic inflexibility in healthy, insulin sensitive volunteers. Here, we hypothesized that co-infusion of L-carnitine may alleviate lipid-induced insulin resistance and metabolic inflexibility.MethodsIn a randomized crossover trial, eight young healthy volunteers underwent hyperinsulinemic-euglycemic clamps (40mU/m2/min) with simultaneous infusion of saline (CON), Intralipid (20%, 90mL/h) (LIPID), or Intralipid (20%, 90mL/h) combined with L-carnitine infusion (28mg/kg) (LIPID+CAR). Ten volunteers were randomized for the intervention arms (CON, LIPID and LIPID+CAR), but two dropped-out during the study. Therefore, eight volunteers participated in all three intervention arms and were included for analysis.ResultsL-carnitine infusion elevated plasma free carnitine availability and resulted in a more pronounced increase in plasma acetylcarnitine, short-, medium-, and long-chain acylcarnitines compared to lipid infusion, however no differences in skeletal muscle free carnitine or acetylcarnitine were found. Peripheral insulin sensitivity and metabolic flexibility were blunted upon lipid infusion compared to CON but L-carnitine infusion did not alleviate this.ConclusionAcute L-carnitine infusion could not alleviated lipid-induced insulin resistance and metabolic inflexibility and did not alter skeletal muscle carnitine availability. Possibly, lipid-induced insulin resistance may also have affected carnitine uptake and may have blunted the insulin-induced carnitine storage in muscle. Future studies are needed to investigate this

    Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism

    No full text
    OBJECTIVE: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 μm(2) (0.01–0.06), p < 0.05) and number (0.003 μm(−2) (−0.001–0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4–OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue(−1), p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (−40.0774 (−64.4766, −15.6782) pmoles∗mg tissue(−1), p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855

    Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism

    No full text
    OBJECTIVE: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 μm2 (0.01-0.06), p < 0.05) and number (0.003 μm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855
    corecore