7 research outputs found

    Why don't we inform patients about the risk of diagnostic errors?

    Get PDF
    The principles of autonomy and informed consent dictate that patients who undergo a radiological examination should actually be informed about the risk of diagnostic errors. Implementing such a policy could potentially increase the quality of care. However, due to the vast number of radiological examinations that are performed in each hospital each day, financial constraints, and the risk of losing trust, patients, and income if the requirement for informed consent is not imposed by law on a state or national level, it may be challenging to inform patients about the risk of diagnostic errors. Future research is necessary to determine if and how an informed consent procedure for diagnostic errors can be implemented in clinical practice.</p

    The clinical and prognostic value of late Gadolinium enhancement imaging in heart failure with mid-range and preserved ejection fraction

    Get PDF
    Heart failure (HF) with mid-range or preserved ejection fraction (HFmrEF; HFpEF) is a heterogeneous disorder that could benefit from strategies to identify subpopulations at increased risk. We tested the hypothesis that HFmrEF and HFpEF patients with myocardial scars detected with late gadolinium enhancement (LGE) are at increased risk for all-cause mortality. Symptomatic HF patients with left ventricular ejection fraction (LVEF) > 40%, who underwent cardiac magnetic resonance (CMR) imaging were included. The presence of myocardial LGE lesions was visually assessed. T1 mapping was performed to calculate extracellular volume (ECV). Multivariable logistic regression analyses were used to determine associations between clinical characteristics and LGE. Cox regression analyses were used to assess the association between LGE and all-cause mortality. A total of 110 consecutive patients were included (mean age 71 +/- 10 years, 49% women, median N-terminal brain natriuretic peptide (NT-proBNP) 1259 pg/ml). LGE lesions were detected in 37 (34%) patients. Previous myocardial infarction and increased LV mass index were strong and independent predictors for the presence of LGE (odds ratio 6.32, 95% confidence interval (CI) 2.07-19.31, p = 0.001 and 1.68 (1.03-2.73), p = 0.04, respectively). ECV was increased in patients with LGE lesions compared to those without (28.6 vs. 26.6%, p = 0.04). The presence of LGE lesions was associated with a fivefold increase in the incidence of all-cause mortality (hazards ratio 5.3, CI 1.5-18.1, p = 0.009), independent of age, sex, New York Heart Association (NYHA) functional class, NT-proBNP, LGE mass and LVEF. Myocardial scarring on CMR is associated with increased mortality in HF patients with LVEF > 40% and may aid in selecting a subpopulation at increased risk

    Evidence of myocardial scarring and microvascular obstruction on cardiac magnetic resonance imaging in a series of patients presenting with myocardial infarction without obstructed coronary arteries

    Get PDF
    Patients with acute chest pain, electrocardiographic ST-elevation and significant elevation of cardiac troponin but without obstructive coronary artery disease represent a diagnostic and therapeutic dilemma. Cardiac magnetic resonance imaging (CMR) can elucidate underlying alternative causes of troponin elevation including detection of (minor) myocardial infarction (MI) by identifying myocardial scarring as delayed enhancement. Of 77 patients, who were admitted between March 2009 and December 2012 with electrocardiographic (ECG) and biochemical evidence of acute MI without obstructive coronary artery disease, 45 patients underwent CMR that showed in 11/77 (14 %) late gadolinium enhancement (LGE), compatible with myocardial scarring. We analyzed clinical, echocardiographic, and CMR data of these patients. Elevated troponin I levels were observed in all patients (median 1.3 ng/l, IQR 0.44–187) with median peak creatinine phosphokinase of 485 U/l (IQR 234–618). Echocardiographic wall motion abnormalities were detected in 8/11 (73 %) patients; in 75 % of these segments, ECG abnormalities were observed in corresponding leads. CMR detected LGE in the inferior (4/11), the inferolateral (5/11), the inferoseptal (2/11), the anterior (3/11), apical (3/11) and in the lateral segments (2/11). In addition, in all but two patients, these segments matched ECG abnormalities in corresponding leads. CMR identified microvascular obstruction in 4/11 (36 %) patients. Patients with clinical, ECG, and biochemical signs of acute MI but unobstructed coronary arteries may have CMR-detectable myocardial scars. Information on myocardial scarring may help to make the diagnosis and draw therapeutic consequences. This case series underlines the value of contrast-enhanced CMR for myocardial tissue characterizatio

    Management and outcome of patients with established coronary artery disease: The Euro Heart Survey on coronary revascularization

    No full text
    corecore