6 research outputs found

    Prospective Analysis in GIST Patients on the Role of Alpha-1 Acid Glycoprotein in Imatinib Exposure

    Get PDF
    Background: For imatinib, a relationship between systemic exposure and clinical outcome has been suggested. Importantly, imatinib concentrations are not stable and decrease over time, for which several mechanisms have been suggested. In this study, we investigated if a decrease in alpha-1 acid glycoprotein (AGP) is the main cause of the lowering in imatinib exposure over time. Methods: We prospectively measured imatinib trough concentration (Cmin) values in 28 patients with gastrointestinal stromal tumours, at 1, 3 and 12 months after the start of imatinib treatment. At the same time points, AGP levels were measured. Results: Overall, imatinib Cmin and AGP levels were correlated (r2 = 0.656; P < 0.001). However, AGP levels did not fluctuate significantly over time, nor did the change in AGP levels correlate with the change in the imatinib Cmin. Conclusion: We showed that systemic AGP levels are not likely to be a key player in the decrease in systemic imatinib exposure over time. As long as intra-individual changes in imatinib exposure remain unexplained, researchers should standardize the sampling times for imatinib in order to be able to assess the clinical applicability of therapeutic drug monitoring

    Treatment with subcutaneous and transdermal fentanyl: Results from a population pharmacokinetic study in cancer patients

    Get PDF
    Purpose: Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the pharmacokinetics of subcutaneous and transdermal fentanyl. Furthermore, we evaluated rotations from the subcutaneous to the transdermal route. Methods: Fifty-two patients treated with subcutaneous and/or transdermal fentanyl for moderate to severe cancer-related pain participated. A population pharmacokinetic model was developed and evaluated using non-linear mixed-effects modelling. For rotations from subcutaneous to transdermal fentanyl, a 1:1 dose conversion ratio was used while the subcutaneous infusion was continued for 12 h (with a 50 % tapering after 6 h). A 6-h scheme with 50 % tapering after 3 h was simulated using the final model. Results: A one-compartment model with first-order elimination and separate first-order absorption processes for each route adequately described the data. The estimated apparent clearance of fentanyl was 49.6 L/h; the absorption rate constant for subcutaneous and transdermal fentanyl was 0.0358 and 0.0135 h-1, respectively. Moderate to large inter-individual and inter-occasion variability was found. Around rotation from subcutaneous to transdermal fentanyl, measured and simulated plasma fentanyl concentrations rose and increasing side effects were observed. Conclusions: We describe the pharmacokinetics of subcutaneous and transdermal fentanyl in one patient cohort and report several findings that are relevant for clinical practice. Further research is warranted to study the optimal scheme for rotations from the subcutaneous to the transdermal route

    A Prospective Population Pharmacokinetic Study on Morphine Metabolism in Cancer Patients

    Get PDF
    Background: Oral and subcutaneous morphine is widely used for the treatment of cancer-related pain; however, solid pharmacokinetic data on this practice are lacking. Furthermore, it is largely unknown which factors contribute to the variability in clearances of morphine and its metabolites and whether morphine clearance is related to treatment outcome. Methods: Blood samples from 49 cancer patients treated with oral and/or subcutaneous morphine were prospectively collected and were used to develop a population pharmacokinetic model for morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). The influence of age, gender, renal function and several polymorphisms possibly related to the pharmacokinetics of the three compounds was investigated. In addition, the relation between treatment failure and morphine and metabolite clearances was explored. Results: A one-compartment model including an extensive first-pass effect adequately described the data of morphine and its metabolites. Estimated mean area under the plasma concentration–time curve (AUC) ratios following oral versus subcutaneous administration were: M3G/morphine 29.7:1 vs. 11.1:1; M6G/morphine 5.26:1 vs. 1.95:1; and M3G/M6G 5.65:1 vs. 5.70:1. Renal function was significantly correlated with clearance of the metabolites, which increased 0.602 L/h per every 10 mL/min/1.73 m2 increase of estimated glomerular filtr

    Effects of smoking and body mass index on the exposure of fentanyl in patients with cancer

    Get PDF
    The transdermal fentanyl patch is widely used to treat cancer-related pain despite its wide inter- and intrapatient variability in pharmacokinetics. The aim of this study was to investigate whether smoking and body size (i.e. body mass index) influence fentanyl exposure in patients with cancer. These are factors that typically change during treatment and disease trajectories. We performed an explorative cohort study in patients with cancer using transdermal fentanyl patches (Durogesic®), by taking a blood sample for pharmacokinetic analysis one day after applying a patch in patients with a stable fentanyl dose. A total of 88 patients were evaluable. Although no statisticall
    corecore