3 research outputs found

    Development and validation of a patient- tailored dose regime in myocardial perfusion imaging using conventional SPECT

    Get PDF
    Background\ud The decreasing image quality in heavier patients can be compensated by administration of a patient-specific dose in myocardial perfusion imaging (MPI) using a cadmium zinc telluride-based SPECT camera. Our aim was to determine if the same can be achieved when using a conventional SPECT camera.\ud \ud \ud Methods\ud 148 patients underwent SPECT stress MPI using a fixed Tc-99m tetrofosmin tracer dose. Measured photon counts were normalized to administered tracer dose and scan time and were correlated with body weight, body mass index, and mass per length to find the best predicting parameter. From these data, a protocol to provide constant image quality was derived, and subsequently validated in 125 new patients.\ud \ud \ud Results\ud Body weight was found to be the best predicting parameter for image quality and was used to derive a new dose formula; Aadmin (MBq) = 223·body weight (kg)0.65/Tscan (min). The measured photon counts decreased in heavier patients when using a fixed dose (P < .01) but this was no longer observed after applying a body-weight-dependent protocol (P = .20).\ud \ud \ud Conclusions\ud Application of a patient-specific protocol resulted in an image quality less depending on patient’s weight. The results are most likely independent of the type of SPECT camera used, and, hence, adoption of patient-specific dose and scan time protocols is recommended

    Development and validation of a patient- tailored dose regime in myocardial perfusion imaging using conventional SPECT

    No full text
    Background: The decreasing image quality in heavier patients can be compensated by administration of a patient-specific dose in myocardial perfusion imaging (MPI) using a cadmium zinc telluride-based SPECT camera. Our aim was to determine if the same can be achieved when using a conventional SPECT camera. Methods: 148 patients underwent SPECT stress MPI using a fixed Tc-99m tetrofosmin tracer dose. Measured photon counts were normalized to administered tracer dose and scan time and were correlated with body weight, body mass index, and mass per length to find the best predicting parameter. From these data, a protocol to provide constant image quality was derived, and subsequently validated in 125 new patients. Results: Body weight was found to be the best predicting parameter for image quality and was used to derive a new dose formula; Aadmin (MBq) = 223·body weight (kg)0.65/Tscan (min). The measured photon counts decreased in heavier patients when using a fixed dose (P < .01) but this was no longer observed after applying a body-weight-dependent protocol (P = .20). Conclusions: Application of a patient-specific protocol resulted in an image quality less depending on patient’s weight. The results are most likely independent of the type of SPECT camera used, and, hence, adoption of patient-specific dose and scan time protocols is recommended

    Development and validation of a patient-tailored dose regime in myocardial perfusion imaging using czt-spect

    Get PDF
    Background: \ud Guidelines for SPECT myocardial perfusion imaging (MPI) traditionally recommend a fixed tracer dose. Yet, clinical practice shows degraded image quality in heavier patients. The aim was to optimize and validate the tracer dose and scan time to obtain a constant image quality less dependent on patients’ physical characteristics.\ud \ud Methods: \ud 125 patients underwent Cadmium Zinc Telluride (CZT)-SPECT stress MPI using a fixed Tc-99m-tetrofosmin tracer dose. Image quality was scored by three physicians on a 4-point grading scale and related to the number of photon counts normalized to tracer dose and scan time. Counts were correlated with various patient-specific parameters dealing with patient size and weight to find the best predicting parameter. From these data, a formula to provide constant image quality was derived, and subsequently tested in 92 new patients.\ud \ud Results: \ud Degradation in image quality and photon counts was observed for heavier patients for all patients’ specific parameters (P < .01). We found body weight to be the best-predicting parameter for image quality and derived a new dose formula. After applying this new body weight-depended tracer dose and scan time in a new group, image quality was found to be constant (P > .19) in all patients.\ud \ud Conclusions:\ud Also in CZT SPECT image quality decreases with weight. The use of a tracer dose and scan time that depends linearly on patient’s body weight corrected for the varying image quality in CZT-SPECT MPI. This leads to better radiation exposure justification
    corecore