391 research outputs found

    Pressure-Induced Magnetic Quantum Phase Transitions from Gapped Ground State in TlCuCl3

    Full text link
    Magnetization maesurements under hydrostatic pressure were performed on an S=1/2 coupled spin system TlCuCl3 with a gapped ground state under magnetic field H parallel to the [2,0,1] direction. With increasing applied pressure P, the gap decreases and closes completely at Pc=0.42 kbar. For P>Pc, TlCuCl3 undergoes antiferromagnetic ordering. A spin-flop transition was observed at Hsf=0.7T. The spin-flop field is approximately independent of pressure, although the sublattice magnetization increases with pressure. The gap and Neel temperature are presented as function is attributed to to the relative enhancement of the interdimer exchange interactions compared with the intradimer exchange interaction.Comment: 4pages,3figures To be published in J. Phys. Soc. Jpn. Vol.73 No.1

    Neutron Scattering Study of Magnetic Ordering and Excitations in the Doped Spin Gap System Tl(Cu1−x_{1-x}Mgx_x)Cl3_3

    Full text link
    Neutron elastic and inelastic scattering measurements have been performed in order to investigate the spin structure and the magnetic excitations in the impurity-induced antiferromagnetic ordered phase of the doped spin gap system Tl(Cu1−x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03. The magnetic Bragg reflections indicative of the ordering were observed at Q=(h,0,l){\pmb Q}=(h, 0, l) with integer hh and odd ll below TN=3.45T_{\rm N}=3.45 K. It was found that the spin structure of the impurity-induced antiferromagnetic ordered phase on average in Tl(Cu1−x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03 is the same as that of the field-induced magnetic ordered phase for H∥b{\pmb H} \parallel b in the parent compound TlCuCl3_3. The triplet magnetic excitation was clearly observed in the a∗a^*-c∗c^* plane and the dispersion relations of the triplet excitation were determined along four different directions. The lowest triplet excitation corresponding to the spin gap was observed at Q=(h,0,l){\pmb Q}=(h, 0, l) with integer hh and odd ll, as observed in TlCuCl3_3. It was also found that the spin gap increases steeply below TNT_{\rm N} upon decreasing temperature. This strongly indicates that the impurity-induced antiferromagnetic ordering coexists with the spin gap state in Tl(Cu1−x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03.Comment: 24 pages, 7 figures, 11 eps files, revtex style, will appear in Phys. Rev.

    Random Bond Effect in the Quantum Spin System (Tl1−x_{1-x}Kx_{x})CuCl3_3

    Full text link
    The effect of exchange bond randomness on the ground state and the field-induced magnetic ordering was investigated through magnetization measurements in the spin-1/2 mixed quantum spin system (Tl1−x_{1-x}Kx_{x})CuCl3_3 for x<0.36x<0.36. Both parent compounds TlCuCl3_3 and KCuCl3_3 are coupled spin dimer systems, which have the singlet ground state with excitation gaps Δ/kB=7.7{\Delta}/k_{\rm B}=7.7 K and 31 K, respectively. Due to bond randomness, the singlet ground state turns into the magnetic state with finite susceptibility, nevertheless, the excitation gap remains. Field-induced magnetic ordering, which can be described by the Bose condensation of excited triplets, magnons, was observed as in the parent systems. The phase transition temperature is suppressed by the bond randomness. This behavior may be attributed to the localization effect.Comment: 19 pages, 7 figures, 12 eps files, revtex, will appear in PR

    Impurity-Induced Antiferromagnetic Ordering in the Spin Gap System TlCuCl_3

    Full text link
    The magnetization measurements have been performed on the doped spin gap system TlCu_{1-x}Mg_xCl_3 with x <= 0.025. The parent compound TlCuCl_3 is a three-dimensional coupled spin dimer system with the excitation gap Delta/k_B = 7.7 K. The impurity-induced antiferromagnetic ordering was clearly observed. The easy axis lies in the (0,1,0) plane. It was found that the transition temperature increases with increasing Mg^{2+} concentration x, while the spin-flop transition field is almost independent of x. The magnetization curve suggests that the impurity-induced antiferromagnetic ordering coexists with the spin gap for x <= 0.017.Comment: 5 pages, 6 figures, revtex styl

    Spin-resonance modes of the spin-gap magnet TlCuCl_3

    Full text link
    Three kinds of magnetic resonance signals were detected in crystals of the spin-gap magnet TlCuCl_3. First, we have observed the microwave absorption due to the excitation of the transitions between the singlet ground state and the excited triplet states. This mode has the linear frequency-field dependence corresponding to the previously known value of the zero-field spin-gap of 156 GHz and to the closing of spin-gap at the magnetic field H_c of about 50 kOe. Second, the thermally activated resonance absorption due to the transitions between the spin sublevels of the triplet excitations was found. These sublevels are split by the crystal field and external magnetic field. Finally, we have observed antiferromagnetic resonance absorption in the field-induced antiferromagnetic phase above the critical field H_c. This resonance frequency is strongly anisotropic with respect to the direction of the magnetic field.Comment: v.2: typo correction (one of the field directions was misprinted in the v.1

    Observation of Field-Induced Transverse N\'{e}el Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering experiments have been performed on the spin gap system TlCuCl3_3 in magnetic fields parallel to the bb-axis. The magnetic Bragg peaks which indicate the field-induced N\'{e}el ordering were observed for magnetic field higher than the gap field Hg≈5.5H_{\rm g}\approx 5.5 T at Q=(h,0,l)Q=(h, 0, l) with odd ll in the a∗−c∗a^*-c^* plane. The spin structure in the ordered phase was determined. The temperature and field dependence of the Bragg peak intensities and the phase boundary obtained were discussed in connection with a recent theory which describes the field-induced N\'{e}el ordering as a Bose-Einstein condensation of magnons.Comment: 4 pages, 5 eps figures, jpsj styl

    Softening of Magnetic Excitations Leading to Pressure-Induced Quantum Phase Transition in Gapped Spin System KCuCl3_3

    Full text link
    KCuCl3_3 is a three dimensionally coupled spin dimer system, which undergoes a pressure-induced quantum phase transition from a gapped ground state to an antiferromagnetic state at a critical pressure of Pc≃8.2P_{\rm c} \simeq 8.2 kbar. Magnetic excitations in KCuCl3_3 at a hydrostatic pressure of 4.7 kbar have been investigated by conducting neutron inelastic scattering experiments using a newly designed cylindrical high-pressure clamp cell. A well-defined single excitation mode is observed. The softening of the excitation mode due to the applied pressure is clearly observed. From the analysis of the dispersion relations, it is found that an intradimer interaction decreases under hydrostatic pressure, while most interdimer interactions increase.Comment: 4 pages, 5 figures, 1 table, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.76 (2007), the graphic problem of Fig.2 was fixe
    • …
    corecore