2,826 research outputs found

    Focused-ion-beam-induced deposition of superconducting nanowires

    Full text link
    Superconducting nanowires, with a critical temperature of 5.2 K, have been synthesized using an ion-beam-induced deposition, with a Gallium focused ion beam and Tungsten Carboxyl, W(CO)6, as precursor. The films are amorphous, with atomic concentrations of about 40, 40, and 20 % for W, C, and Ga, respectively. Zero Kelvin values of the upper critical field and coherence length of 9.5 T and 5.9 nm, respectively, are deduced from the resistivity data at different applied magnetic fields. The critical current density is Jc= 1.5 10^5 A/cm2 at 3 K. This technique can be used as a template-free fabrication method for superconducting devices.Comment: Accepted for publication in Applied Physics Letter

    Comparative Assessment of LES and URANS for Flow Over a Cylinder at a Reynolds Number of 3900

    Get PDF
    Numerical simulations utilising turbulence models based on the Reynolds Averaged Navier Stokes (RANS) equations generally exhibit poor performance in predicting separated flow around cylinders. This paper assesses potential improvements offered by the three-dimensional unsteady RANS and Large Eddy Simulation (LES) methodologies in replicating the flow around a cylinder at a Reynolds number, based on diameter, of 3900. The performance is assessed against corresponding experimental data and two-dimensional unsteady RANS turbulence simulations

    Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star

    Get PDF
    The gravitational wave signal generated by global, nonaxisymmetric shear flows in a neutron star is calculated numerically by integrating the incompressible Navier--Stokes equation in a spherical, differentially rotating shell. At Reynolds numbers \Rey \gsim 3 \times 10^{3}, the laminar Stokes flow is unstable and helical, oscillating Taylor--G\"ortler vortices develop. The gravitational wave strain generated by the resulting kinetic-energy fluctuations is computed in both ++ and ×\times polarizations as a function of time. It is found that the signal-to-noise ratio for a coherent, 10810^{8}-{\rm s} integration with LIGO II scales as 6.5(Ω∗/104rads−1)7/2 6.5 (\Omega_*/10^{4} {\rm rad} {\rm s}^{-1})^{7/2} for a star at 1 {\rm kpc} with angular velocity Ω∗\Omega_*. This should be regarded as a lower limit: it excludes pressure fluctuations, herringbone flows, Stuart vortices, and fully developed turbulence (for \Rey \gsim 10^{6}).Comment: (1) School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. (2) Departamento de Fisica, Escuela de Ciencias,Universidad de Oriente, Cumana, Venezuela, (3) Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia. Accepted for publication in The Astrophysical Journal Letter

    Symmetric mode resonance of bubbles near a rigid boundary - the nonlinear case with time delay effects

    Get PDF
    A fundamental understanding of the effect of a surface on the resonance frequency of bubbles will be useful in the future development of diagnostic medical ultrasound equipment, and specifically in the area of targeted contrast agents for the screening and possible treatment of colon cancer. In this work we turn to the wall effects on the nonlinear resonance frequency response of air bubbles in water, following on from an earlier work which considered linear interactions (E. M. B. Payne, S. Illesinghe, A. Ooi, R. Manasseh, J. Acoust Soc. Am. 118, 2841-2849 (2005)). Numerical results for micron-sized bubbles near a rigid boundary are presented, showing the shift in frequency caused by the presence of the boundary and the presence of other bubbles. Time delay effects are also included, showing a damping of the frequency response. Simulations are limited to the special case where all bubbles are in phase (i.e., the symmetric mode), which refers to the case where all bubbles have the same initial conditions and are subjected to the same excitation pressure field. As a result they have identical time histories. An experimental method for measuring the frequency response of a single bubble attached to a surface is also briefly mentioned

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    Numerical Study of the Behaviour of Wall Shear Stress in Pulsatile Stenotic Flows

    Get PDF
    This paper presents a numerical study of pulsatile flow through an axisymmetric stenosed artery. Numerical calculations of the incompressible Navier-Stokes equations were carried out in an axisymmetric geometry to investigate how the wall shear stress (WSS) is affected by varying levels of stenosis contractions and pulse periods (reduced velocity). It is found that the distribution and strength of the WSS is closely correlated with the position of the vortex ring formed at the stenosis. Each vortex ring generates high WSS at the stenosis walls and this high WSS propagate downstream with the vortex ring. As the vortex ring convects downstream, it loses its strength due to viscous effects and WSS decreases in magnitude. In general, the strength of the vortex ring increases with increasing stenosis levels which leads to higher WSS values on the walls. The effect of smaller pulse period is to reduce the distance between the vortex rings, thus increasing the spatial variation of WSS along the stenosed artery

    Vortex Matter Transition in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} under Tilted Fields

    Full text link
    Vortex phase diagram under tilted fields from the cc axis in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the cc axis, an anomaly (Hp∗H_p^\ast) other than the well-known peak effect (HpH_p) are found at fields below HpH_p. The angular dependence of the field Hp∗H_p^\ast is nonmonotonic and clearly different from that of HpH_p and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.Comment: Revtex, 4 pages, some corrections are adde

    Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star

    Full text link
    We integrate for the first time the hydrodynamic Hall-Vinen-Bekarevich-Khalatnikov equations of motion of a 1S0^{1}S_{0}-paired neutron superfluid in a rotating spherical shell, using a pseudospectral collocation algorithm coupled with a time-split fractional scheme. Numerical instabilities are smoothed by spectral filtering. Three numerical experiments are conducted, with the following results. (i) When the inner and outer spheres are put into steady differential rotation, the viscous torque exerted on the spheres oscillates quasiperiodically and persistently (after an initial transient). The fractional oscillation amplitude (∼10−2\sim 10^{-2}) increases with the angular shear and decreases with the gap width. (ii) When the outer sphere is accelerated impulsively after an interval of steady differential rotation, the torque increases suddenly, relaxes exponentially, then oscillates persistently as in (i). The relaxation time-scale is determined principally by the angular velocity jump, whereas the oscillation amplitude is determined principally by the gap width. (iii) When the mutual friction force changes suddenly from Hall-Vinen to Gorter-Mellink form, as happens when a rectilinear array of quantized Feynman-Onsager vortices is destabilized by a counterflow to form a reconnecting vortex tangle, the relaxation time-scale is reduced by a factor of ∼3\sim 3 compared to (ii), and the system reaches a stationary state where the torque oscillates with fractional amplitude ∼10−3\sim 10^{-3} about a constant mean value. Preliminary scalings are computed for observable quantities like angular velocity and acceleration as functions of Reynolds number, angular shear, and gap width. The results are applied to the timing irregularities (e.g., glitches and timing noise) observed in radio pulsars.Comment: 6 figures, 23 pages. Accepted for publication in Astrophysical Journa

    XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    Full text link
    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure

    The London theory of the crossing-vortex lattice in highly anisotropic layered superconductors

    Full text link
    A novel description of Josephson vortices (JVs) crossed by the pancake vortices (PVs) is proposed on the basis of the anisotropic London theory. The field distribution of a JV and its energy have been calculated for both dense (aλJa\lambda_J) PV lattices with distance aa between PVs, and the nonlinear JV core size λJ\lambda_J. It is shown that the ``shifted'' PV lattice (PVs displaced mainly along JVs in the crossing vortex lattice structure), formed in high out-of-plane magnetic fields transforms into the PV lattice ``trapped'' by the JV sublattice at a certain field, lower than Φ0/γ2s2\Phi_0/\gamma^2s^2, where Φ0\Phi_0 is the flux quantum, γ\gamma is the anisotropy parameter and ss is the distance between CuO2_2 planes. With further decreasing BzB_z, the free energy of the crossing vortex lattice structure (PV and JV sublattices coexist separately) can exceed the free energy of the tilted lattice (common PV-JV vortex structure) in the case of γs<λab\gamma s<\lambda_{ab} with the in-plane penetration depth λab\lambda_{ab} if the low (Bx<γΦ0/λab2B_x<\gamma\Phi_0/\lambda_{ab}^2) or high (Bx≳Φ0/γs2B_x\gtrsim \Phi_0/\gamma s^2) in-plane magnetic field is applied. It means that the crossing vortex structure is realized in the intermediate field orientations, while the tilted vortex lattice can exist if the magnetic field is aligned near the cc-axis and the abab-plane as well. In the intermediate in-plane fields γΦ0/λab2≲Bx≲Φ0/γs2\gamma\Phi_0/\lambda_{ab}^2\lesssim B_x \lesssim \Phi_0/\gamma s^2, the crossing vortex structure with the ``trapped'' PV sublattice seems to settle in until the lock-in transition occurs since this structure has the lower energy with respect to the tilted vortex structure in the magnetic field H⃗{\vec H} oriented near the abab-plane.Comment: 15 pages, 6 figures, accepted for publication in PR
    • …
    corecore