134 research outputs found

    A quadtree-polygon-based scaled boundary finite element method for crack propagation modeling in functionally graded materials

    Full text link
    This paper presents a method to improve the computational efficiency of the scaled boundary finite element formulation for functionally graded materials. Both isotropic and orthotropic functionally graded materials are considered. This is achieved using a combination of quadtree and polygon meshes. This hybrid meshing approach is particularly suitable to be used with the SBFEM for functionally graded materials because of the significant amount of calculations required to compute the stiffness matrices of the polygons/cells in the mesh. When a quadtree structure is adopted, most of the variables required for the numerical simulation can be pre-computed and stored in the memory, retrieved and scaled as required during the computations, leading to an efficient method for crack propagation modeling. The scaled boundary finite element formulation enables accurate computation of the stress intensity factors directly from the stress solutions without any special post-processing techniques or local mesh refinement in the vicinity of the crack tip. Numerical benchmarks demonstrate the efficiency of the proposed method as opposed to using a purely polygon-mesh based approach

    A scaled boundary finite element formulation for poroelasticity

    Full text link
    This paper develops the scaled boundary finite element formulation for applications in coupled field problems, in particular, to poroelasticity. The salient feature of this formulation is that it can be applied over arbitrary polygons and/or quadtree decomposition, which is widely employed to traverse between small and large scales. Moreover, the formulation can treat singularities of any order. Within this framework, 2 sets of semianalytical, scaled boundary shape functions are used to interpolate the displacement and the pore fluid pressure. These shape functions are obtained from the solution of vector and scalar Laplacian, respectively, which are then used to discretise the unknown field variables similar to that of the finite element method. The resulting system of equations are similar in form as that obtained using standard procedures such as the finite element method and, hence, solved using the standard procedures. The formulation is validated using several numerical benchmarks to demonstrate its accuracy and convergence properties

    A novel scaled boundary finite element formulation with stabilization and its application to image-based elastoplastic analysis

    Full text link
    Digital images are increasingly being used as input data for computational analyses. This study presents an efficient numerical technique to perform image-based elastoplastic analysis of materials and structures. The quadtree decomposition algorithm is employed for image-based mesh generation, which is fully automatic and highly efficient. The quadtree cells are modeled by scaled boundary polytope elements, which eliminate the issue of hanging nodes faced by standard finite elements. A novel, simple, and efficient scaled boundary elastoplastic formulation with stablisation is developed. In this formulation, the return-mapping calculation is only required to be performed at a single point in a polytope element, which facilitates the computational efficiency of the elastoplastic analysis and simplicity of implementation. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed technique for performing the elastoplastic analysis of high-resolution images

    A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials

    Full text link
    This manuscript presents an extension of the recently-developed high order complete scaled boundary shape functions to model elasto-static problems in functionally graded materials. Both isotropic and orthotropic functionally graded materials are modelled. The high order complete properties of the shape functions are realized through the introduction of bubble-like functions derived from the equilibrium condition of a polygon subjected to body loads. The bubble functions preserve the displacement compatibility between the elements in the mesh. The heterogeneity resulting from the material gradient introduces additional terms in the polygon stiffness matrix that are integrated analytically. Few numerical benchmarks were used to validate the developed formulation. The high order completeness property of the bubble functions result in superior accuracy and convergence rates for generic elasto-static and fracture problems involving functionally graded materials

    Adaptive analysis using scaled boundary finite element method in 3D

    Full text link
    In this paper, an adaptive refinement technique using the scaled boundary finite element method (SBFEM) is proposed. The salient feature of this technique is that it is not required to regenerate the mesh for the whole model during the iterations. To this end, a local mesh refinement strategy is implemented based on a polytree algorithm in three dimensions, which can be applied to polyhedral elements with arbitrary number of nodes, edges and faces. These elements constructed by the SBFEM can be used in analysis with their boundaries discretized only, which reduce the difficulty to connect elements with different sizes. An explicit residual based error indicator is developed using the discontinuity of the stress field to guide the adaptive mesh refinement. The accuracy and efficiency of the proposed method are demonstrated using five numerical examples, including complex geometry and stress singularity

    Scaled boundary finite element method for compressible and nearly incompressible elasticity over arbitrary polytopes

    Full text link
    In this paper, a purely displacement-based formulation is presented within the framework of the scaled boundary finite element method to model compressible and nearly incompressible materials. A selective reduced integration technique combined with an analytical treatment in the nearly incompressible limit is employed to alleviate volumetric locking. The stiffness matrix is computed by solving the scaled boundary finite element equation. The salient feature of the proposed technique is that it neither requires a stabilization parameter nor adds additional degrees of freedom to handle volumetric locking. The efficiency and the robustness of the proposed approach is demonstrated by solving various numerical examples in two and three dimensions

    Hydraulic fracture at the dam-foundation interface using the scaled boundary finite element method coupled with the cohesive crack model

    Full text link
    The scaled boundary finite element method coupled with the cohesive crack model is extended to investigate the hydraulic fracture at the dam-foundation interface. The concrete and rock bulk are modeled by the scaled boundary polygons. Cohesive interface elements model the fracture process zone between the crack faces. The cohesive tractions are modeled as side-face tractions in the scaled boundary polygons. The solution of the stress field around the crack tip is expressed semi-analytically as a power series. Accurate displacement field, stress field and stress intensity factors can be obtained without asymptotic enrichment or local mesh refinement. The proposed procedure is verified by the hydraulic fracture of a rectangular embankment on rigid foundation and applied to the modeling of hydraulic fracture on the dam-foundation interface of a benchmark dam. Different distributions of water pressure inside the crack are investigated. It is found that the water pressure inside the crack decreases the peak overflow to less than 20% of the case without water in the crack. Considering the water lag or not is significant to the response, while different distribution of pressure following the water lag region in the fracture process zone has negligible influence

    Adaptive modelling of dynamic brittle fracture - a combined phase field regularized cohesive zone model and scaled boundary finite element approach

    Full text link
    Based on the error indicator computed from the scaled boundary equations, a quadtree based adaptive phase-field method is proposed for dynamic brittle fracture problems in isotropic material using the scaled boundary finite element method (SBFEM). The use of SBFEM alleviates the need for additional: (a) constraints to handle hanging nodes resulting from adaptive refinement and (b) post-processing techniques. Three representative examples are solved to demonstrate the efficiency of the proposed approach. From the numerical study, it is opined that the proposed approach requires an order of magnitude fewer degrees of freedom when compared to uniform refinement and can capture the crack morphology under dynamic loading conditions without compromising accuracy

    Numerical estimation of stress intensity factors in cracked functionally graded piezoelectric materials – A scaled boundary finite element approach

    Full text link
    The stress intensity factors and the electrical displacement intensity factor for functionally graded piezoelectric materials (FGPMs) are influenced by: (a) the spatial variation of the mechanical property and (b) the electrical and mechanical boundary conditions. In this work, a semi-analytical technique is proposed to study the fracture parameters of FGPMs subjected to far field traction and electrical boundary conditions. A scaled boundary finite element formulation for the analysis of functionally graded piezoelectric materials is developed. The formulation is linearly complete for uncracked polygons and can capture crack tip singularity for cracked polygons. These salient features enable the computation of the fracture parameters directly from their definition. Numerical examples involving cracks in FGPMs show the accuracy and efficiency of the proposed technique

    An adaptive scaled boundary finite element method for contact analysis

    Full text link
    In this work, we propose a framework for an adaptive contact analysis in deformable solids using the effective error indicator from the scaled boundary finite element method (SBFEM) with a quadtree decomposition. Further, the SBFEM is implemented with the commercial finite element software, Abaqus, to perform the contact analysis by employing the user element subroutine (UEL) feature. The SBFEM error indicator coupled with the quadtree decomposition is implemented in Matlab and allowed to interact with the Abaqus using .inp file for an adaptive refinement. The detailed implementation of the framework, input data format, and the UEL subroutine which is one of the key features of the proposed work are clearly explained. The effectiveness of the proposed framework is demonstrated by solving several contact problems of engineering significance. The developed SBFEM code can be downloaded from https://github.com/nsundar/sbfem
    • …
    corecore