3 research outputs found

    Lysine Reacts with Cholesterol Hydroperoxide to Form Secosterol Aldehydes and Lysine-Secosterol Aldehyde Adducts

    No full text
    Two cholesterol secosterol aldehydes, namely, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol A) and its aldolization product 3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxyaldehyde (secosterol B), are highly bioactive compounds which have been detected in human tissues and potentially contribute to the development of physiological dysfunctions such as atherosclerosis, Alzheimer’s disease, diabetes, and cancer. They were originally considered to be exclusive products of cholesterol ozonolysis and thus to be evidence for endogenous ozone formation. However, it was recently postulated that primary amines such as lysine may catalyse their formation from cholesterol-5α-hydroperoxide (Ch-5α-OOH), the main product of the oxidation of cholesterol with singlet oxygen. This involves cyclization of Ch-5α-OOH to an unstable dioxetane intermediate, which decomposes to form secosterol aldehydes with triplet carbonyl groups, whose return to the singlet state is at least partly coupled to the conversion of triplet molecular oxygen to singlet oxygen. Here, we subjected cholesterol to photosensitized oxidation, which predominantly produces Ch-5α-OOH and minor amounts of the 6α- and 6β-hydroperoxides, exposed the hydroperoxide mixture to lysine in the presence of the antioxidant 2,6-ditertiary-butyl-4-hydroxytoluene (BHT), and analysed the reaction mixture by liquid chromatography-electrospray ionization-mass spectrometry. Consistent with the postulated lysine-catalysed formation of secosterol aldehydes, we detected formation of the latter and several types of their lysine adducts, including carbinolamines, Schiff’s bases, and amide-type adducts. We propose that the amide type adducts, which are major biomarkers of lipid oxidation, are mainly formed by singlet oxygen-mediated oxidation of the carbinolamine adducts

    The effect of different processing methods on nutrient and isoflavone content of soymilk obtained from six varieties of soybean grown in Rwanda

    No full text
    Soymilk is rich in nutrients and isoflavones, and could greatly promote nutrition and health. However, this product is not widely accepted due to an objectionable beany flavor. Several methods involving heat treatment and soaking in basic solutions prior to soymilk extraction have been reported to reduce the objectionable flavor. However, the effects of such treatments on the nutritional value and isoflavone content of soymilk, and the responses of different soybean varieties to nutrient extraction by these methods is not well studied. The aim of this study was to determine the effect of three processing methods on protein, fat, minerals, and isoflavone content in soymilk from six soybean varieties grown in Rwanda (Peka‐6, SB 24, Sc. Sequel, Sc, Squire, and a local variety) to find the best variety and processing method. The first method (M1) involved soaking soybeans in water for 12 hr prior to milk extraction, M2 involved blanching in NaHCO3 prior to extraction and M3 involved soaking in NaHCO3 solution for 16 hr and subsequent cooking prior to extraction. M1 resulted in significantly higher nutrient and isoflavone extraction than M2 and M3. Thus, M1 extracted more nutrients and can be recommended for soymilk production. However, where consumers prefer soymilk obtained by M2 or M3, Sc Squire and the local variety may be recommended. Sc. Squire has another advantage of higher isoflavone content than the other varieties. Further comprehensive studies on the sensory acceptability of products made from different varieties by different methods among different consumer categories will be necessary
    corecore