4 research outputs found

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching ∼\sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    The Lorenz number in CeCoIn5_5 inferred from the thermal and charge Hall currents

    Full text link
    The thermal Hall conductivity κxy\kappa_{xy} and Hall conductivity σxy\sigma_{xy} in CeCoIn5_5 are used to determine the Lorenz number LH{\cal L}_H at low temperature TT. This enables the separation of the observed thermal conductivity into its electronic and non-electronic parts. We uncover evidence for a charge-neutral, field-dependent thermal conductivity, which we identify with spin excitations. At low TT, these excitations dominate the scattering of charge carriers. We show that suppression of the spin excitations in high fields leads to a steep enhancement of the electron mean-free-path, which leads to an interesting scaling relation between the magnetoresistance, thermal conductivity and σxy\sigma_{xy}.Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re

    Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations

    Full text link
    In many strongly correlated electron systems, remarkable violation of the relaxation time approximation (RTA) is observed. The most famous example would be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). Here, we develop a transport theory involving resistivity and Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC accounts for the significant enhancements in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the striking \omega-dependence of the AC Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. The present theory also explains very similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which is a heavy-fermion system near the AF QCP, and in the organic superconductor \kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008

    Superconducting materials - a topical overview

    Full text link
    A topical overview on the state of the art and science of superconducting materials is presented. The relation of atomic structure and suggested superconductivity mechanisms as well as possible applications are discussed for the various families of superconducting materials discovered within the last 25 years.Comment: 70 pages, 28 figures; to be published in: A. V. Narlikar (Ed.), Frontiers in Superconducting Materials, Springer Verlag, Berlin, 2004; for a manuscript featuring higher-resolution figures and for associated information see http://wwwifp.fzk.de/ISAS/index.htm
    corecore