254 research outputs found
Charge dynamics in thermally and doping induced insulator-metal transitions of (Ti1-xVx)2O3
Charge dynamics of (Ti1-xVx)2O3 with x=0-0.06 has been investigated by
measurements of charge transport and optical conductivity spectra in a wide
temperature range of 2-600K with the focus on the thermally and doping induced
insulator-metal transitions (IMTs). The optical conductivity peaks for the
interband transitions in the 3d t2g manifold are observed in the both
insulating and metallic states, while their large variation (by ~0.4 eV) with
change of temperature and doping level scales with that of the Ti-Ti dimer bond
length, indicating the weakened singlet bond in the course of IMTs. The
thermally and V-doping induced IMTs are driven with the increase in carrier
density by band-crossing and hole-doping, respectively, in contrast to the
canonical IMT of correlated oxides accompanied by the whole collapse of the
Mott gap.Comment: 4 pages, 4 figure
The Lorenz number in CeCoIn inferred from the thermal and charge Hall currents
The thermal Hall conductivity and Hall conductivity
in CeCoIn are used to determine the Lorenz number at low temperature . This enables the separation of the observed
thermal conductivity into its electronic and non-electronic parts. We uncover
evidence for a charge-neutral, field-dependent thermal conductivity, which we
identify with spin excitations. At low , these excitations dominate the
scattering of charge carriers. We show that suppression of the spin excitations
in high fields leads to a steep enhancement of the electron mean-free-path,
which leads to an interesting scaling relation between the magnetoresistance,
thermal conductivity and .Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re
Magnetic digital flop of ferroelectric domain with fixed spin chirality in a triangular lattice helimagnet
Ferroelectric properties in magnetic fields of varying magnitude and
direction have been investigated for a triangular-lattice helimagnet
CuFe1-xGaxO2 (x=0.035). The magnetoelectric phase diagrams were deduced for
magnetic fields along [001], [110], and [1-10] direction, and the in-plane
magnetic field was found to induce the rearrangement of six possible
multiferroic domains. Upon every 60-degree rotation of in-plane magnetic field
around the c-axis, unique 120-degree flop of electric polarization occurs as a
result of the switch of helical magnetic q-vector. The chirality of spin helix
is always conserved upon the q-flop. The possible origin is discussed in the
light of the stable structure of multiferroic domain wall.Comment: 5 pages, 4 figures. Accepted in Phys. Rev. Let
Specific heat study of spin-structural change in pyrochlore NdMoO
By measurements of specific heat, we have investigated the magnetic field
() induced spin-structural change in NdMoO that shows
spin-chirality-related magneto-transport phenomena. A broad peak around 2 K
caused by the ordering of 2-in 2-out structure of the Nd moments at zero
shifts to the lower temperature () up to around 3 T and then to the higher
above around 3 T with increasing for all the direction of . This is
due to the crossover from antiferromagnetic to ferromagnetic arrangement
between the Nd and Mo moments. While the peak increases monotonically above
3 T for //[100], another peak emerges around 0.9 K at 12 T for //[111],
which is ascribed to the ordering of 3-in 1-out structure. For //[110], a
spike like peak is observed at around 3 T, which is caused perhaps by some spin
flip transition.Comment: 5 pages, 4 figure
Impurity-doping induced ferroelectricity in frustrated antiferromagnet CuFeO2
Dielectric responses have been investigated on the triangular-lattice
antiferromagnet CuFeO2 and its site-diluted analogs CuFe1-xAlxO2 (x=0.01 and
0.02) with and without application of magnetic field. We have found a
ferroelectric behavior at zero magnetic field for x=0.02. At any doping level,
the onset field of the ferroelectricity always coincides with that of the
noncollinear magnetic structure while the transition field dramatically
decreases to zero field with Al doping. The results imply the further
possibility of producing the ferroelectricity by modifying the frustrated spin
structure in terms of site-doping and external magnetic field.Comment: 4 pages, 4 figure
Ferroelectricity induced by spin-dependent metal-ligand hybridization in BaCoGeO
We have investigated the variation of induced ferroelectric polarization
under magnetic field with various directions and magnitudes in a staggered
antiferromagnet BaCoGeO. While the ferroelectric polarization
cannot be explained by the well-accepted spin current model nor exchange
striction mechanism, we have shown that it is induced by the spin-dependent
- hybridization between the transition-metal (Co) and ligand (O) via the
spin-orbit interaction. On the basis of the correspondence between the
direction of electric polarization and the magnetic state, we have also
demonstrated the electrical control of the magnetization direction.Comment: 4 pages, 4 figure
- …