186 research outputs found

    Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3_{3}

    Full text link
    We report the dielectric dispersion of the giant magnetocapacitance (GMC) in multiferroic DyMnO3_{3} over a wide frequency range. The GMC is found to be attributable not to the softened electromagnon but to the electric-field-driven motion of multiferroic domain wall (DW). In contrast to conventional ferroelectric DWs, the present multiferroic DW motion holds extremely high relaxation rate of ∼\sim10710^{7} s−1^{-1} even at low temperatures. This mobile nature as well as the model simulation suggests that the multiferroic DW is not atomically thin as in ferroelectrics but thick, reflecting its magnetic origin.Comment: 4 pages, 4 figure

    Strength of Correlations in electron and hole doped cuprates

    Full text link
    High temperature superconductivity was achieved by introducing holes in a parent compound consisting of copper oxide layers separated by spacer layers. It is possible to dope some of the parent compounds with electrons, and their physical properties are bearing some similarities but also significant differences from the hole doped counterparts. Here, we use a recently developed first principles method, to study the electron doped cuprates and elucidate the deep physical reasons why their behavior is so different than the hole doped materials. We find that electron doped compounds are Slater insulators, e.g. a material where the insulating behavior is the result of the presence of magnetic long range order. This is in sharp contrast with the hole doped materials, where the parent compound is a Mott charge transfer insulator, namely a material which is insulating due to the strong electronic correlations but not due to the magnetic order.Comment: submitted to Nature Physic

    3D diffuse tensor imaging important acquisition in diagnostic and preoperative planning of intracranial lesions

    Get PDF
    Diffusion tensor imaging (DTI) is a MRI technique that enables the measurement of the diffusion of water in tissue in order to produce neural tract images. DTI allows clinicians to look at anisotropic diffusion in white-matter tracts, but it is limited in demonstrating spatial and directional anisotropy. Advanced methods such as color coding and tractography (fiber tracking) have been used to investigate the directionality. The localization of tumors in relation to the white matter tracts (infiltration, deflection), has been one the most important initial applications. Tractography potentially solves a problem for a neurosurgeon in terms of minimizing functional damage and determining the extent of diffuse infiltration of pathologic tissue to minimize residual tumor volume. In this way, tractography facilitates preoperative planning. Tractographic images may help to clarify whether a tumor is compressing, abutting, or infiltrating the contiguous white-matter tracts. DTI identify different tumor components, and to differentiate tumor invasion from normal brain tissue or edema. The recent development of DTI allows for direct examination of the brain microstructure, and DTI has become a useful tool for investigation of brain disorders such as stroke, epilepsy, MS, brain tumors, and demyelinating disorders
    • …
    corecore