10,899 research outputs found

    Short timescale behavior of colliding heavy nuclei at intermediate energies

    Full text link
    An Antisymmetrized Molecular Dynamics model is used to explore the collision of 114^{114}Cd projectiles with 92^{92}Mo target nuclei at E/A=50 MeV over a broad range in impact parameter. The atomic number (Z), velocity, and emission pattern of the reaction products are examined as a function of the impact parameter and the cluster recognition time. The non-central collisions are found to be essentially binary in character resulting in the formation of an excited projectile-like fragment (PLF^*) and target-like fragment (TLF^*). The decay of these fragments occurs on a short timescale, 100\let\le300 fm/c. The average excitation energy deduced for the PLF^* and TLF^* `saturates for mid-central collisions, 3.5\leb\le6 fm, with its magnitude depending on the cluster recognition time. For short cluster recognition times (t=150 fm/c), an average excitation energy as high as \approx6 MeV is predicted. Short timescale emission leads to a loss of initial correlations and results in features such as an anisotropic emission pattern of both IMFs and alpha particles emitted from the PLF^* and TLF^* in peripheral collisions.Comment: 19 pages, 17 figure

    Flexible control of the Peierls transition in metallic C60_{60} polymers

    Full text link
    The metal-semiconductor transition of peanut-shaped fullerene (C60_{60}) polymers is clarified by considering the electron-phonon coupling in the uneven structure of the polymers. We established a theory that accounts for the transition temperature TcT_c reported in a recent experiment and also suggests that TcT_c is considerably lowered by electron doping or prolonged irradiation during synthesis. The decrease in TcT_c is an appealing phenomenon with regard to realizing high-conductivity C60_{60}-based nanowires even at low temperatures.Comment: 3 pages, 3 figure

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121

    Two mechanisms of pseudogap formation in Bi-2201: Evidence from the c-axis magnetoresistance

    Full text link
    Measurements of the c-axis resistivity and magnetoresistance have been used to investigate the pseudogap (PG) behavior in Bi_{2+z}Sr_{2-x-z}La_xCuO_y (Bi-2201) crystals at various hole densities. While the PG opening temperature T* increases with decreasing hole doping, the magnetic-field sensitivity of the PG is found to have a very different trend: it appears at lower temperatures in more underdoped samples and vanishes in non-superconducting samples. These data suggest that besides the field-insensitive pseudogap emerging at T*, a distinct one is formed above T_c as a precursor to superconductivity.Comment: 7 pages, 6 figures, accepted for publication in Europhysics Letters (initially submitted to PRL on 14 June 2000

    Response of convection electric fields in the magnetosphere to IMF orientation change

    Full text link
    [1] The transient response of convection electric fields in the inner magnetosphere to southward turning of the interplanetary magnetic field (IMF) is investigated using in‐situ electric field observations by the CRRES and Akebono spacecraft. Electric fields earthward of the inner edge of the electron plasma sheet show quick responses simultaneously with change in ionospheric electric fields, which indicates the arrival of the first signal related to southward turning. A coordinated observation of the electric field by the CRRES and Akebono spacecraft separated by 5 RE reveals a simultaneous increase in the dawn‐dusk electric field in a wide region of the inner magnetosphere. A quick response associated with the southward turning of the IMF is also identified in in‐situ magnetic fields. It indicates that the southward turning of the IMF initiates simultaneous (less than 1 min) enhancements of ionospheric electric fields, convection electric fields in the inner magnetosphere, and the ring or tail current and region 2 FACs. In contrast, a quick response of convection electric fields is not identified in the electron plasma sheet. A statistical study using 161 events of IMF orientation change in 1991 confirms a prompt response within 5 min for 80% of events earthward of the electron plasma sheet, while a large time lag of more than 30 min is identified in electric fields in the electron plasma sheet. The remarkable difference in the response of electric fields indicates that electric fields in the electron plasma sheet are weakened by high conductance in the magnetically conjugated auroral ionosphere.https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277Published versio

    Real-space observation of current-driven domain wall motion in submicron magnetic wires

    Full text link
    Spintronic devices, whose operation is based on the motion of a magnetic domain wall (DW), have been proposed recently. If a DW could be driven directly by flowing an electric current instead of a magnetic field, the performance and functions of such device would be drastically improved. Here we report real-space observation of the current-driven DW motion by using a well-defined single DW in a micro-fabricated magnetic wire with submicron width. Magnetic force microscopy (MFM) visualizes that a single DW introduced in the wire is displaced back and forth by positive and negative pulsed-current, respectively. We can control the DW position in the wire by tuning the intensity, the duration and the polarity of the pulsed-current. It is, thus, demonstrated that spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR

    S=1/2 Kagome antiferromagnets Cs2_2Cu3MF_3MF_{12}$ with M=Zr and Hf

    Full text link
    Magnetization and specific heat measurements have been carried out on Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12} single crystals, in which Cu2+^{2+} ions with spin-1/2 form a regular Kagom\'{e} lattice. The antiferromagnetic exchange interaction between neighboring Cu2+^{2+} spins is J/kB360J/k_{\rm B}\simeq 360 K and 540 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Structural phase transitions were observed at Tt210T_{\rm t}\simeq 210 K and 175 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. The specific heat shows a small bend anomaly indicative of magnetic ordering at TN=23.5T_\mathrm{N}= 23.5 K and 24.5 K in Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Weak ferromagnetic behavior was observed below TNT_\mathrm{N}. This weak ferromagnetism should be ascribed to the antisymmetric interaction of the Dzyaloshinsky-Moriya type that are generally allowed in the Kagom\'{e} lattice.Comment: 6 pages, 4 figure. Conference proceeding of Highly Frustrated Magnetism 200
    corecore