5,954 research outputs found

    Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices

    Full text link
    The magneto-Coulomb oscillation, the single electron repopulation induced by external magnetic field, observed in a ferromagnetic single electron transistor is further examined in various ferromagnetic single electron devices. In case of double- and triple-junction devices made of Ni and Co electrodes, the single electron repopulation always occurs from Ni to Co electrodes with increasing a magnetic field, irrespective of the configurations of the electrodes. The period of the magneto-Coulomb oscillation is proportional to the single electron charging energy. All these features are consistently explained by the mechanism that the Zeeman effect induces changes of the Fermi energy of the ferromagnetic metal having a non-zero spin polarizations. Experimentally determined spin polarizations are negative for both Ni and Co and the magnitude is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp

    Delta degrees of freedom in antisymmetrized molecular dynamics and (p,p') reactions in the delta region

    Get PDF
    Delta degrees of freedom are introduced into antisymmetrized molecular dynamics (AMD). This is done by increasing the number of basic states in the AMD wave function, introducing a Skyrme-type delta-nucleon potential, and including NNNΔNN\leftrightarrow N\Delta reactions in the collision description. As a test of the delta dynamics, the extended AMD is applied to (p,p') recations at Elab=800E_{\rm lab}=800 MeV for a 12^{12}C target. It is found that the ratio and the absolute values for delta peak and quasielastic peak (QEP) in the 12^{12}C(p,p') reaction are reproduced for angles \Theta_{\rm lab} \agt 40^\circ, pointing to a correct treatment of the delta dynamics in the extended AMD. For forward angles the QEP is overestimated. The results of the AMD calculations are compared to one-step Monte Carlo (OSMC) calculations and a detailed analysis of multi-step and delta potential effects is given. As important side results we present a way to apply a Gallilei invariant theory for (N,N') reactions up to Elab800E_{\rm lab} \approx 800 MeV which ensures approximate Lorentz invariance and we discuss how to fix the width parameter ν\nu of the single particle momentum distribution for outgoing nucleons in the AMD calculation.Comment: 28 pages, revtex, 12 figures included, figures are also available upon request as postscript files from the authors (e-mail: [email protected]), submitted to Phys. Rev.

    Quantum enhancement of N-photon phase sensitivity by interferometric addition of down-converted photon pairs to weak coherent light

    Full text link
    It is shown that the addition of down-converted photon pairs to coherent laser light enhances the N-photon phase sensitivity due to the quantum interference between components of the same total photon number. Since most of the photons originate from the coherent laser light, this method of obtaining non-classical N-photon states is much more efficient than methods based entirely on parametrically down-converted photons. Specifically, it is possible to achieve an optimal phase sensitivity of about delta phi^2=1/N^(3/2), equal to the geometric mean of the standard quantum limit and the Heisenberg limit, when the average number of down-converted photons contributing to the N-photon state approaches (N/2)^(1/2).Comment: 21 pages, including 6 figures. Extended version gives more details on down-conversion efficiencies and clarifies the relation between phase sensitivity and squeezing. The title has been changed in order to avoid misunderstandings regarding these concept

    Direct Minimization Generating Electronic States with Proper Occupation Numbers

    Full text link
    We carry out the direct minimization of the energy functional proposed by Mauri, Galli and Car to derive the correct self-consistent ground state with fractional occupation numbers for a system degenerating at the Fermi level. As a consequence, this approach enables us to determine the electronic structure of metallic systems to a high degree of accuracy without the aid of level broadening of the Fermi-distribution function. The efficiency of the method is illustrated by calculating the ground-state energy of C2_2 and Si2_2 molecules and the W(110) surface to which a tungsten adatom is adsorbed.Comment: 4 pages, 4 figure

    Periodic and Quasi-Periodic Compensation Strategies of Extreme Outages caused by Polarization Mode Dispersion and Amplifier Noise

    Full text link
    Effect of birefringent disorder on the Bit Error Rate (BER) in an optical fiber telecommunication system subject to amplifier noise may lead to extreme outages, related to anomalously large values of BER. We analyze the Probability Distribution Function (PDF) of BER for various strategies of Polarization Mode Dispersion (PMD) compensation. A compensation method is proposed that is capable of more efficient extreme outages suppression, which leads to substantial improvement of the fiber system performance.Comment: 3 pages, 1 figure, Submitted to IEEE Photonics Letter

    Efeito de genótipo e ambiente sobre o percentual de grãos esverdeados de soja, em seis locais da região Sul de Mato Grosso do Sul, safra 2004/05.

    Get PDF
    Em grãos de soja, tem-se constatado diferentes níveis de esverdeamento entre cultivares e locais de semeadura da cultura. Com o objetivo de verificar os efeitos de genótipo e ambiente sobre a incidência de grãos esverdeados, foi conduzido o presente trabalho utilizando-se oito cultivares de soja (BRS 133, BRS 181, BRS 239, EMBRAPA 48, BRS 206, BRS 240, BRS 241 e CD 202) em seis ambientes de Mato Grosso do Sul, na safra 2004/2005bitstream/item/38718/1/BP200530.pdfDocumento on-line

    Transcriptional regulation of Saccharomyces cerevisiaeCYS3 encoding cystathionine γ-lyase

    Get PDF
    In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine γ-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (−311 to −303) and a CGC motif (CGCCACAC; −193 to −186), which is one base shorter than the CCG motif, in the 5′-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; −217 to −210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs
    corecore