7 research outputs found

    Image quality improvement of single-shot turbo spin-echo magnetic resonance imaging of female pelvis using a convolutional neural network

    No full text
    We have developed a deep learning-based approach to improve image quality of single-shot turbo spin-echo (SSTSE) images of female pelvis. We aimed to compare the deep learning-based single-shot turbo spin-echo (DL-SSTSE) images of female pelvis with turbo spin-echo (TSE) and conventional SSTSE images in terms of image quality.One hundred five and 21 subjects were used as training and test sets, respectively. We performed 6-fold cross validation. In the training process, low-quality images were generated from TSE images as input. TSE images were used as ground truth images. In the test process, the trained convolutional neural network was applied to SSTSE images. The output images were denoted as DL-SSTSE images. Apart from DL-SSTSE images, classical filtering methods were adopted to SSTSE images. Generated images were denoted as F-SSTSE images. Contrast ratio (CR) of gluteal fat and myometrium and signal-to-noise ratio (SNR) of gluteal fat were measured for all images. Two radiologists graded these images using a 5-point scale and evaluated the image quality with regard to overall image quality, contrast, noise, motion artifact, boundary sharpness of layers in the uterus, and the conspicuity of the ovaries. CRs, SNRs, and image quality scores were compared using the Steel-Dwass multiple comparison tests.CRs and SNRs were significantly higher in DL-SSTSE, F-SSTSE, and TSE images than in SSTSE images. Scores with regard to overall image quality, contrast, noise, and boundary sharpness of layers in the uterus were significantly higher on DL-SSTSE and TSE images than on SSTSE images. There were no significant differences in the CRs, SNRs, and respective scores between DL-SSTSE and TSE images. The score with regard to motion artifacts was significantly higher on DL-SSTSE, F-SSTSE, and SSTSE images than on TSE images. The score with regard to the conspicuity of ovaries was significantly higher on DL-SSTSE images than on F-SSTSE, SSTSE, and TSE images (P < .001).DL-SSTSE images showed higher image quality as compared with SSTSE images. In comparison with conventional TSE images, DL-SSTSE images had acceptable image quality while keeping the advantage of the motion artifact-robustness and acquisition time efficiency in SSTSE imaging

    Design and characterization of microstrip patch antennas for high-Tc superconducting terahertz emitters

    No full text
    We designed and characterized a microstrip pattern of planar patch antennas compatible with a cuprate high-Tc superconducting terahertz emitter. Antenna parameters were optimized using an electromagnetic simulator. We observed repeatable sub-terahertz emissions from each mesa fabricated on identical Bi2Sr2CaCu2O8+δ base crystals in a continuous frequency range of 0.35–0.85 THz. Although there was no significant output power enhancement, a plateau behavior at a fixed frequency was observed below 40 K, indicating moderate impedance matching attributable to the ambient microstrip pattern. A remarkably anisotropic polarization at an axial ratio of up to 16.9 indicates a mode-locking effect. Our results enable constructing compactly assembled, monolithic, and broadly tunable superconducting terahertz sources

    Improved excitation mode selectivity of high- T<sub>c</sub>superconducting terahertz emitters

    No full text
    Using our recent design of thermally managed sandwich device structures, we studied the radiation frequency characteristics of three such devices of the same rectangular dimensions made from the same single crystal of the high-Tc superconductor Bi2Sr2CaCu2O8+ δ, and all three devices exhibit similar characteristics. Their observed radiation intensities appear to be enhanced at many transverse magnetic TMn,m cavity mode frequencies, possibly including some higher TM0,m modes with waves solely along the rectangular length, none of which have previously been reported. In addition, the temperature dependences of the radiation frequencies correspond strongly to the temperature dependences of the maximum bias voltages applied to the devices. The excitations of many cavity modes higher in frequency than that of the usually observed TM1,0 mode and the high reproducibility of the radiation frequency characteristics both appear to originate from the reduction in the Joule self-heating of the thermally managed sandwich structures. The information provided here should aid in the design of future devices to obtain the desired emission frequency ranges.Quantum Internet Divisio
    corecore