10,797 research outputs found

    Manufacturing plants’ use of temporary workers: an analysis using census micro data

    Get PDF
    Using plant-level data from the Plant Capacity Utilization (PCU) Survey, we examine how a manufacturing plant’s use of temporary workers is associated with the nature of its output fluctuations. Our empirical evidence suggests that plants choose temps over perms when they expect output to fall, which allows them to avoid costs associated with laying off permanent employees. We also found that plants whose output levels are associated with greater levels of uncertainty use more temps. The effects of other variables are also tested in order to examine the validity of various views about why firms use temporary workers. The variables we look at include wage and benefit levels for permanent workers, unionization rates, turnover rates, seasonal factors, and plant size and age.Temporary employees

    Flexible control of the Peierls transition in metallic C60_{60} polymers

    Full text link
    The metal-semiconductor transition of peanut-shaped fullerene (C60_{60}) polymers is clarified by considering the electron-phonon coupling in the uneven structure of the polymers. We established a theory that accounts for the transition temperature TcT_c reported in a recent experiment and also suggests that TcT_c is considerably lowered by electron doping or prolonged irradiation during synthesis. The decrease in TcT_c is an appealing phenomenon with regard to realizing high-conductivity C60_{60}-based nanowires even at low temperatures.Comment: 3 pages, 3 figure

    Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei

    Get PDF
    Antisymmetrized molecular dynamics (AMD) with quantum branching processes is reformulated so that it can be applicable to the collisions of heavy nuclei such as Au + Au multifragmentation reactions. The quantum branching process due to the wave packet diffusion effect is treated as a random term in a Langevin-type equation of motion, whose numerical treatment is much easier than the method of the previous papers. Furthermore a new approximation formula, called the triple-loop approximation, is introduced in order to evaluate the Hamiltonian in the equation of motion with much less computation time than the exact calculation. A calculation is performed for the Au + Au central collisions at 150 MeV/nucleon. The result shows that AMD almost reproduces the copious fragment formation in this reaction.Comment: 24 pages, 5 figures embedde

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121

    Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation

    Get PDF
    On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets for the quantum system, a novel model (called AMD-V) is constructed by the stochastic incorporation of the diffusion and the deformation of wave packets which is calculated by Vlasov equation without any restriction on the one-body distribution. In other words, the stochastic branching process in molecular dynamics is formulated so that the instantaneous time evolution of the averaged one-body distribution is essentially equivalent to the solution of Vlasov equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body correlation and can naturally describe the fluctuation among many channels of the reaction. It is demonstrated that the newly introduced process of AMD-V has drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon, especially on the fragmentation mechanism, and AMD-V reproduces the fragmentation data very well. Discussions are given on the interrelation among the frameworks of AMD, AMD-V and other microscopic models developed for the nuclear dynamics.Comment: 26 pages, LaTeX with revtex and epsf, embedded postscript figure

    Isospin fractionation and isoscaling in dynamical nuclear collisions

    Full text link
    Isoscaling is found to hold for fragment yields in the antisymmetrized molecular dynamics (AMD) simulations for collisions of calcium isotopes at 35 MeV/nucleon. This suggests the applicability of statistical considerations to the dynamical fragment emission. The observed linear relationship between the isoscaling parameters and the isospin asymmetry of fragments supports the above suggestion. The slope of this linear function yields information about the symmetry energy in low density region where multifragmentation occurs.Comment: 11 pages, 6 figure

    Dynamics of an Acoustic Polaron in One-Dimensional Electron-Lattice System

    Full text link
    The dynamical behavior of an acoustic polaron in typical non-degenerate conjugated polymer, polydiacetylene, is numerically studied by using Su-Schrieffer-Heeger's model for the one dimensional electron-lattice system. It is confirmed that the velocity of a polaron accelerated by a constant electric field shows a saturation to a velocity close to the sound velocity of the system, and that the width of a moving polaron decreases as a monotonic function of the velocity tending to zero at the saturation velocity. The effective mass of a polaron is estimated to be about one hundred times as heavy as the bare electron mass. Furthermore the linear mode analysis in the presence of a polaron is carried out, leading to the conclusion that there is only one localized mode, i.e. the translational mode. This is confirmed also from the phase shift of extended modes. There is no localized mode corresponding to the amplitude mode in the case of the soliton in polyacetylene. Nevertheless the width of a moving polaron shows small oscillations in time. This is found to be related to the lowest odd symmetry extended mode and to be due to the finite size effect.Comment: 12 pages, latex, 9 figures (postscript figures abailble on request to [email protected]) to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.

    Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices

    Full text link
    The magneto-Coulomb oscillation, the single electron repopulation induced by external magnetic field, observed in a ferromagnetic single electron transistor is further examined in various ferromagnetic single electron devices. In case of double- and triple-junction devices made of Ni and Co electrodes, the single electron repopulation always occurs from Ni to Co electrodes with increasing a magnetic field, irrespective of the configurations of the electrodes. The period of the magneto-Coulomb oscillation is proportional to the single electron charging energy. All these features are consistently explained by the mechanism that the Zeeman effect induces changes of the Fermi energy of the ferromagnetic metal having a non-zero spin polarizations. Experimentally determined spin polarizations are negative for both Ni and Co and the magnitude is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp
    • …
    corecore