466 research outputs found
Reverberation Mapping Results from MDM Observatory
We present results from a multi-month reverberation mapping campaign
undertaken primarily at MDM Observatory with supporting observations from
around the world. We measure broad line region (BLR) radii and black hole
masses for six objects. A velocity-resolved analysis of the H_beta response
shows the presence of diverse kinematic signatures in the BLR.Comment: To appear in the Proceedings of the IAU Symposium No. 267:
Co-Evolution of Central Black Holes and Galaxies, Rio de Janeiro, 200
Black Hole Masses in Three Seyfert Galaxies
We analyze published reverberation mapping data for three Seyfert galaxies
(NGC 3227, NGC 3516, and NGC 4593) to refine the mass estimate for the
supermassive black hole in the center of each object. Treatment of the data in
a manner more consistent with other large compilations of such masses allows us
to more securely compare our results to wider samples of data, e.g., in the
investigation of the M_bh-sigma relationship for active and quiescent galaxies.Comment: 14 pages, 4 figures. Accepted for publication in Ap
Hydrography and circulation west of Sardinia in June 2014
In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m−3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m−3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15′ E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s−1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition
Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database
We present improved black hole masses for 35 active galactic nuclei (AGNs)
based on a complete and consistent reanalysis of broad emission-line
reverberation-mapping data. From objects with multiple line measurements, we
find that the highest precision measure of the virial product is obtained by
using the cross-correlation function centroid (as opposed to the
cross-correlation function peak) for the time delay and the line dispersion (as
opposed to full width half maximum) for the line width and by measuring the
line width in the variable part of the spectrum. Accurate line-width
measurement depends critically on avoiding contaminating features, in
particular the narrow components of the emission lines. We find that the
precision (or random component of the error) of reverberation-based black hole
mass measurements is typically around 30%, comparable to the precision attained
in measurement of black hole masses in quiescent galaxies by gas or stellar
dynamical methods. Based on results presented in a companion paper by Onken et
al., we provide a zero-point calibration for the reverberation-based black hole
mass scale by using the relationship between black hole mass and host-galaxy
bulge velocity dispersion. The scatter around this relationship implies that
the typical systematic uncertainties in reverberation-based black hole masses
are smaller than a factor of three. We present a preliminary version of a
mass-luminosity relationship that is much better defined than any previous
attempt. Scatter about the mass-luminosity relationship for these AGNs appears
to be real and could be correlated with either Eddington ratio or object
inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication
in The Astrophysical Journa
The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements
We have obtained high resolution images of the central regions of 14
reverberation-mapped active galactic nuclei (AGN) using the Hubble Space
Telescope Advanced Camera for Surveys High Resolution Camera to account for
host-galaxy starlight contamination of measured AGN luminosities. We measure
the host-galaxy starlight contribution to the continuum luminosity at 5100 A
through the typical ground-based slit position and geometry used in the
reverberation-mapping campaigns. We find that removing the starlight
contribution results in a significant correction to the luminosity of each AGN,
both for lower luminosity sources, as expected, but also for the higher
luminosity sources such as the PG quasars. After accounting for the host galaxy
starlight, we revisit the well-known broad-line region radius--luminosity
relationship for nearby AGN. We find the power-law slope of the relationship
for the H beta line to be 0.518 +/- 0.039, shallower than previously reported
and consistent with the slope of 0.5 expected from the naive theoretical
assumption that all AGN have, on average, the same ionizing spectrum and the
same ionization parameter and gas density in the H beta line-emitting region.Comment: 27 pages, 5 tables, 4 figures, accepted to ApJ; full resolution
figures available at
http://www.astronomy.ohio-state.edu/~bentz/astroph0602412.htm
Five new real-time detections of Fast Radio Bursts with UTMOST
We detail a new fast radio burst (FRB) survey with the Molonglo Radio
Telescope, in which six FRBs were detected between June 2017 and December 2018.
By using a real-time FRB detection system, we captured raw voltages for five of
the six events, which allowed for coherent dedispersion and very high time
resolution (10.24 s) studies of the bursts. Five of the FRBs show temporal
broadening consistent with interstellar and/or intergalactic scattering, with
scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows
remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched
for phase-coherence between the leading and trailing peaks and found none,
ruling out lensing scenarios. Based on this survey, we calculate an all-sky
rate at 843 MHz of events sky day to a fluence
limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and
ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index
(). Our results suggest that FRB
spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been
made for most of the reported bursts, with no associated transients found. No
repeat bursts were found in the survey.Comment: 13 pages, 11 figures, submitted to MNRA
Black hole mass estimation from X-ray variability measurements in AGN
We propose a new method of estimation of the black hole masses in AGN based
on the normalized excess variance, sigma_{nxs}^2. We derive a relation between
sigma_{nxs}^2, the length of the observation, T, the light curve bin size,
Delta t, and the black hole mass, assuming that (i) the power spectrum above
the high frequency break, f_{bf}, has a slope of -2, (ii) the high frequency
break scales with black hole mass, (iii) the power spectrum amplitude (in
'frequency x power' space) is universal and (iv) sigma_{nxs}^2 is calculated
from observations of length T < 1/f_{bf}. Values of black hole masses in AGN
obtained with this method are consistent with estimates based on other
techniques such as reverberation mapping or the Mbh-stellar velocity dispersion
relation. The method is formally equivalent to methods based on power spectrum
scaling with mass but the use of the normalized excess variance has the big
advantage of being applicable to relatively low quality data.Comment: 5 pages, 1 figure, 1 table, accepted for publication in MNRAS Letter.
Added minor change on page 5 - corrected mistake (1/T 1/T > nu
A unified framework for the orbital structure of bars and triaxial ellipsoids
We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (~4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (~7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (~2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies
High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment
The observational part of the REP14-MED experiment was conducted in June 2014
in the Sardo-Balearic Basin west of Sardinia (western
Mediterranean Sea). Two research vessels collected high-resolution
oceanographic data by means of hydrographic casts, towed systems, and
underway measurements. In addition, a vast amount of data was provided by a
fleet of 11 ocean gliders, time series were available from moored
instruments, and information on Lagrangian flow patterns was obtained from
surface drifters and one profiling float. The spatial resolution of the
observations encompasses a spectrum over 4 orders of magnitude from
(10<sup>1</sup> m) to (10<sup>5</sup> m), and the time
series from the moored instruments cover a spectral range of 5 orders from
(10<sup>1</sup> s) to (10<sup>6</sup> s). The objective of
this article is to provide an overview of the huge data set which has been
utilised by various studies, focusing on (i) water masses and circulation,
(ii) operational forecasting, (iii) data assimilation, (iv) variability of
the ocean, and (v) new payloads for gliders
- …