2,045 research outputs found
Multipole correlations of -orbital Hubbard model with spin-orbit coupling
We investigate the ground-state properties of a one-dimensional -orbital Hubbard model including an atomic spin-orbit coupling by using
numerical methods, such as Lanczos diagonalization and density-matrix
renormalization group. As the spin-orbit coupling increases, we find a
ground-state transition from a paramegnetic state to a ferromagnetic state. In
the ferromagnetic state, since the spin-orbit coupling mixes spin and orbital
states with complex number coefficients, an antiferro-orbital state with
complex orbitals appears. According to the appearance of the complex orbital
state, we observe an enhancement of octupole correlations.Comment: 3 pages, 3 figures, To appear in J. Phys. Soc. Jpn. Suppl.,
Proceedings of ICHE2010 (September 17-20, 2010, Hachioji, Japan
Superconductivity emerging near quantum critical point of valence transition
The nature of the quantum valence transition is studied in the
one-dimensional periodic Anderson model with Coulomb repulsion between f and
conduction electrons by the density-matrix renormalization group method. It is
found that the first-order valence transition emerges with the quantum critical
point and the crossover from the Kondo to the mixed-valence states is strongly
stabilized by quantum fluctuation and electron correlation. It is found that
the superconducting correlation is developed in the Kondo regime near the sharp
valence increase. The origin of the superconductivity is ascribed to the
development of the coherent motion of electrons with enhanced valence
fluctuation, which results in the enhancement of the charge velocity, but not
of the charge compressibility. Statements on the valence transition in
connection with Ce metal and Ce compounds are given.Comment: 9 pages, 4 figure
High-pressure study on the superconducting pyrochlore oxide Cd2Re2O7
Superconducting and structural phase transitions in a pyrochlore oxide
Cd2Re2O7 are studied under high pressure by x-ray diffraction and electrical
resistivity measurements. A rich P-T phase diagram is obtained, which contains
at least two phases with the ideal and slightly distorted pyrochlore
structures. It is found that the transition between them is suppressed with
increasing pressure and finally disappears at a critical pressure Pc = 3.5 GPa.
Remarkable enhancements in the residual resistivity as well as the coefficient
A of the AT 2 term in the resistivity are found around the critical pressure.
Superconductivity is detected only for the phase with the structural
distortion. It is suggested that the charge fluctuations of Re ions play a
crucial role in determining the electronic properties of Cd2Re2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains
We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model
coupled to a lattice distortion by a quantum Monte Carlo method. Investigating
the ground state energy of the static bond-alternating chain, we find that the
instability to a dimerized chain depends on the value of the spin-phonon
coupling, unlike the case of S=1/2. The spin state is the dimer state or the
uniform Haldane state depending on whether the lattice distorts or not,
respectively. At an intermediate value of the spin-phonon coupling, we find the
first-order transition between the two states. We also find the coexistence of
the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos,
replaced figure
Absence of Edge Localized Moments in the Doped Spin-Peierls System CuGeSiO
We report the observation of nuclear quadrupole resonance (NQR) of Cu from
the sites near the doping center in the spin-Peierls system
CuGeSiO. The signal appears as the satellites in the Cu NQR
spectrum, and has a suppressed nuclear spin-lattice relaxation rate indicative
of a singlet correlation rather than an enhanced magnetic correlation near the
doping center. Signal loss of Cu nuclei with no neighboring Si is also
observed. We conclude from these observations that the doping-induced moments
are not in the vicinity of the doping center but rather away from it.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
Bridging the Two Plans in the Semantics for Relevant Logic
Part of the Synthese Library book series (SYLI, volume 418)This paper considers how the two plans in the semantics for relevant logic are related to each other. The so-called American plan, classical-style four-valued semantics, is intuitive, but weak. The so-called Australian plan, two-valued frame semantics, is very powerful, but the semantic devices employed need some explanation. Examining R. Routley’s 1984 paper ‘American plan completed, ’ this paper argues that the American plan provides an explanatory and ontological basis for the Australian plan, and that the latter is just a developed form of the former
- …