16 research outputs found

    Super-resolution MRI Using Finite Rate of Innovation Curves

    Full text link
    We propose a two-stage algorithm for the super-resolution of MR images from their low-frequency k-space samples. In the first stage we estimate a resolution-independent mask whose zeros represent the edges of the image. This builds off recent work extending the theory of sampling signals of finite rate of innovation (FRI) to two-dimensional curves. We enable its application to MRI by proposing extensions of the signal models allowed by FRI theory, and by developing a more robust and efficient means to determine the edge mask. In the second stage of the scheme, we recover the super-resolved MR image using the discretized edge mask as an image prior. We evaluate our scheme on simulated single-coil MR data obtained from analytical phantoms, and compare against total variation reconstructions. Our experiments show improved performance in both noiseless and noisy settings.Comment: Conference paper accepted to ISBI 2015. 4 pages, 2 figure

    How do Minimum-Norm Shallow Denoisers Look in Function Space?

    Full text link
    Neural network (NN) denoisers are an essential building block in many common tasks, ranging from image reconstruction to image generation. However, the success of these models is not well understood from a theoretical perspective. In this paper, we aim to characterize the functions realized by shallow ReLU NN denoisers -- in the common theoretical setting of interpolation (i.e., zero training loss) with a minimal representation cost (i.e., minimal â„“2\ell^2 norm weights). First, for univariate data, we derive a closed form for the NN denoiser function, find it is contractive toward the clean data points, and prove it generalizes better than the empirical MMSE estimator at a low noise level. Next, for multivariate data, we find the NN denoiser functions in a closed form under various geometric assumptions on the training data: data contained in a low-dimensional subspace, data contained in a union of one-sided rays, or several types of simplexes. These functions decompose into a sum of simple rank-one piecewise linear interpolations aligned with edges and/or faces connecting training samples. We empirically verify this alignment phenomenon on synthetic data and real images.Comment: Thirty-seventh Conference on Neural Information Processing System
    corecore