7,585 research outputs found

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching \sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    Phase coherence and the Nernst effect at magic angles in organic conductors

    Full text link
    A giant Nernst signal was recently observed for fields near crystallographic directions in (TMTSF)2_2PF6_6. Such large Nernst signals are most naturally associated with the motion of pancake vortices. We propose a model in which phase coherence is destroyed throughout the sample except in planes closely aligned with the applied field H\bf H. A small tilt above or below the plane changes the direction and density of the penetrating vortices and leads to a Nernst signal that varies with the tilt angle of H\bf H as observed. The resistance notches at magic angles are understood in terms of flux-flow dissipation from field-induced vortices.Comment: 4 pages, 4 figure

    A hidden constant in the anomalous Hall effect of a high-purity magnet MnSi

    Full text link
    Measurements of the Hall conductivity in MnSi can provide incisive tests of theories of the anomalous Hall (AH) effect, because both the mean-free-path and magnetoresistance (MR) are unusually large for a ferromagnet. The large MR provides an accurate way to separate the AH conductivity σxyA\sigma_{xy}^A from the ordinary Hall conductivity σxyN\sigma_{xy}^N. Below the Curie temperature TCT_C, σxyA\sigma_{xy}^A is linearly proportional to M M (magnetization) with a proportionality constant SHS_H that is independent of both TT and HH. In particular, SHS_H remains a constant while σxyN\sigma_{xy}^N changes by a factor of 100 between 5 K and TCT_C. We discuss implications of the hidden constancy in SHS_H.Comment: 5 pages, 4 figures. Minor change

    Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2_2Se3_3

    Full text link
    We report a transport study of exfoliated few monolayer crystals of topological insulator Bi2_2Se3_3 in an electric field effect (EFE) geometry. By doping the bulk crystals with Ca, we are able to fabricate devices with sufficiently low bulk carrier density to change the sign of the Hall density with the gate voltage VgV_g. We find that the temperature TT and magnetic field dependent transport properties in the vicinity of this VgV_g can be explained by a bulk channel with activation gap of approximately 50 meV and a relatively high mobility metallic channel that dominates at low TT. The conductance (approximately 2 ×\times 7e2/he^2/h), weak anti-localization, and metallic resistance-temperature profile of the latter lead us to identify it with the protected surface state. The relative smallness of the observed gap implies limitations for EFE topological insulator devices at room temperature.Comment: 4 pages, 4 figures. In new version, panels have been removed from Figures 1, 2, and 4 to improve clarity. Additional data included in Figure 4. Introduction and discussion revised and expande

    The Nernst effect in high-TcT_c superconductors

    Full text link
    The observation of a large Nernst signal eNe_N in an extended region above the critical temperature TcT_c in hole-doped cuprates provides evidence that vortex excitations survive above TcT_c. The results support the scenario that superfluidity vanishes because long-range phase coherence is destroyed by thermally-created vortices (in zero field), and that the pair condensate extends high into the pseudogap state in the underdoped (UD) regime. We present a series of measurements to high fields HH which provide strong evidence for this phase-disordering scenario.Comment: 21 pages, 28 figure

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica

    The Lorenz number in CeCoIn5_5 inferred from the thermal and charge Hall currents

    Full text link
    The thermal Hall conductivity κxy\kappa_{xy} and Hall conductivity σxy\sigma_{xy} in CeCoIn5_5 are used to determine the Lorenz number LH{\cal L}_H at low temperature TT. This enables the separation of the observed thermal conductivity into its electronic and non-electronic parts. We uncover evidence for a charge-neutral, field-dependent thermal conductivity, which we identify with spin excitations. At low TT, these excitations dominate the scattering of charge carriers. We show that suppression of the spin excitations in high fields leads to a steep enhancement of the electron mean-free-path, which leads to an interesting scaling relation between the magnetoresistance, thermal conductivity and σxy\sigma_{xy}.Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re
    corecore