14,203 research outputs found

    Nonlinear Sigma Model Analysis of the AFM Phase Transition of the Kondo Lattice

    Full text link
    We have studied the antiferromagnetic quantum phase transition of a 2D Kondo-Heisenberg square lattice using the non-linear sigma model. A renormalization group analysis of the competing Kondo -- RKKY interaction was carried out to 1-loop order in the Ο΅\epsilon expansion, and a new quantum critical point is found, dominated by Kondo fluctuations. In addition, the spin-wave velocity scales logarithmically near the new QCP, i.e breakdown of hydrodynamic behavior. The results allow us to propose a new phase diagram near the AFM fixed point of this 2D Kondo lattice model.Comment: 4 pages, 4 figure

    Decision-making regarding total knee replacement surgery: a qualitative meta-synthesis

    Get PDF
    Knee osteoarthritis is a highly prevalent condition that can result in disability and reduced quality of life. The evidence suggests that total knee replacement surgery (TKR) is an effective intervention for patients with severe knee problems, but there is also an unmet need for this treatment in the UK. To help understand the reason for this unmet need, the aim of this study was to explore the factors that influence the decision-making process of TKR surgery by synthesising the available evidence from qualitative research on this topic

    The Suppression of Radiation Reaction and Laser Field Depletion in Laser-Electron beam interaction

    Full text link
    The effects of radiation reaction (RR) have been studied extensively by using the ultraintense laser interacts with the counter-propagating relativistic electron. At the laser intensity at the order of 102310^{23} W/cm2^2, the effects of RR are significant in a few laser period for a relativistic electron. However, the laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulate this interaction with a beam of 10910^9 electrons by means of Particle-in-Cell (PIC) method. We observed that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is due to the ponderomotive force that prevents the electrons from approaching the center of the laser pulse and leads to the interaction at weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.Comment: 6 pages, 3 figure
    • …
    corecore