12,791 research outputs found

    Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT

    Full text link
    The anti--de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Ho\v{r}ava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attentions due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Ho\v{r}ava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Ho\v{r}ava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in λ=1\lambda=1 Ho\v{r}ava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter ϵ\epsilon close to unity. Sufficiently charged flat black holes for ϵ\epsilon close to unity, and sufficiently charged positively curved black holes with ϵ\epsilon close to zero, are also unstable. The implication to the Ho\v{r}ava-Lifshitz holographic superconductor is discussed.Comment: 15 pages, 6 figures. Updated version accepted by Phys. Rev. D, with corrections to various misprints. References update

    Kinetic Equation for a Plasma and Its Application to High-frequency Conductivity

    Get PDF
    Kinetic equation for inhomogenious nonisotropic plasma and application to high frequency conductivit

    Integrin α2β1 Expression Regulates Matrix Metalloproteinase-1-Dependent Bronchial Epithelial Repair in Pulmonary Tuberculosis.

    Get PDF
    Pulmonary tuberculosis (TB) is caused by inhalation of Mycobacterium tuberculosis, which damages the bronchial epithelial barrier to establish local infection. Matrix metalloproteinase-1 plays a crucial role in the immunopathology of TB, causing breakdown of type I collagen and cavitation, but this collagenase is also potentially involved in bronchial epithelial repair. We hypothesized that the extracellular matrix (ECM) modulates M. tuberculosis-driven matrix metalloproteinase-1 expression by human bronchial epithelial cells (HBECs), regulating respiratory epithelial cell migration and repair. Medium from monocytes stimulated with M. tuberculosis induced collagenase activity in bronchial epithelial cells, which was reduced by ~87% when cells were cultured on a type I collagen matrix. Matrix metalloproteinase-1 had a focal localization, which is consistent with cell migration, and overall secretion decreased by 32% on type I collagen. There were no associated changes in the specific tissue inhibitors of metalloproteinases. Decreased matrix metalloproteinase-1 secretion was due to ligand-binding to the α2β1 integrin and was dependent on the actin cytoskeleton. In lung biopsies, samples from patients with pulmonary TB, integrin α2β1 is highly expressed on the bronchial epithelium. Areas of lung with disrupted collagen matrix showed an increase in matrix metalloproteinases-1 expression compared with areas where collagen was comparable to control lung. Type I collagen matrix increased respiratory epithelial cell migration in a wound-healing assay, and this too was matrix metalloproteinase-dependent, since it was blocked by the matrix metalloproteinase inhibitor GM6001. In summary, we report a novel mechanism by which α2β1-mediated signals from the ECM modulate matrix metalloproteinase-1 secretion by HBECs, regulating their migration and epithelial repair in TB

    FXR Optimization Project: Determining Beam Quality By Cathode Plasma Image Analysis

    Get PDF

    Structural and molecular basis of the assembly of the TRPP2/PKD1 complex

    Get PDF
    Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations
    corecore