1,176 research outputs found
On Civility
Commencement address given by John D. Ong, Chairman and Chief Executive Officer of B. F. Goodrich, to the Autumn 1996 graduating class of The Ohio State University, St. John Arena, Columbus, Ohio, December 13, 1996
Point Compression for Koblitz Elliptic Curves
Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is an elliptic curve over \F_2; the group E( \Ftn ) has convenient features for efficient implementation of elliptic curve cryptography.
Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard rho algorithm for the discrete logarithm problem on Koblitz curves. This implies that when using Koblitz curves, one has a lower security per bit than when using general elliptic curves defined over the same field. Hence for a fixed security level, systems using Koblitz curves require slightly more bandwidth.
We present a method to reduce this bandwidth when a normal basis representation for \Ftn is used. Our method is appropriate for applications such as Diffie-Hellman key exchange or Elgamal encryption. We show that, with a low probability of failure, our method gives the expected bandwidth for a given security level
Recommended from our members
Summary of Gummed Film Results Through December 1959
The data for gummed-film fall-out measurements through Dec. 1959 are reported. While the initial purpose of the gummed-film network was to determine the geographic distribution and time of arrival of fall-out, considerable effort has been devoted to computation of Sr/sup 90/ deposition and infinity gamma dose. These latter computations have been satisfactory for the period of observation and furnish data for locations not covered by other types of measurement. Detailed comparisons are made between Sr/sup 90/ estimates from gummed film and analyses made on pot and soil samples. Comparable tests of the gamma-dose estimate are not possible. Summary tables are given for each gummed-film station listing the monthly estimates of Sr/sup 90/ deposition and infinity gamma dose. (auth
Charge-coupled devices detectors with high quantum efficiency at UV wavelengths
We report on multilayer high efficiency antireflection coating (ARC) design and development for use at UV wavelengths on CCDs and other Si-based detectors. We have previously demonstrated a set of single-layer coatings, which achieve >50% quantum efficiency (QE) in four bands from 130 to 300 nm. We now present multilayer coating designs that significantly outperform our previous work between 195 and 215 nm. Using up to 11 layers, we present several model designs to reach QE above 80%. We also demonstrate the successful performance of 5 and 11 layer ARCs on silicon and fused silica substrates. Finally, we present a five-layer coating deposited onto a thinned, delta-doped CCD and demonstrate external QE greater than 60% between 202 and 208 nm, with a peak of 67.6% at 206 nm
Search for Ultra High Energy (UHE) γ-ray counterparts of BATSE 3B catalog events
We search for a Ultra High Energy (E>1014 eV)(E>1014eV) counterpart source to cosmic γ-ray bursts detected with the BATSE detectors. Using the 3B catalog positions, we examine 115 candidate bursts with the CASA-MIA detector for UHE γ-ray emission at or near the time of the observed γ-ray burst. No statistically significant excess of γ-rays is found from any of the candidate event regions. Based upon these results, we calculate the flux limits for UHE emission from these candidate event regions. Typical 95% confidence level flux limits are about 6×10−12 γ cm−2 sec−16×10−12γcm−2sec−1 at a γ-ray detection threshold of 160 TeV. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87368/2/598_1.pd
Microbiological culture versus 16S/18S rRNA gene PCR-sanger sequencing for infectious keratitis:a three-arm, diagnostic cross-sectional study
Background: To compare the diagnostic performance of microbiological culture and 16S/18S rRNA gene polymerase chain reaction (PCR)-Sanger sequencing for infectious keratitis (IK) and to analyse the effect of clinical disease severity on test performance and inter-test concordance. Methods: This was a three-arm, diagnostic cross-sectional study. We included all eligible patients who presented with presumed bacterial/fungal keratitis to the Queen's Medical Centre, Nottingham, UK, between June 2021 and September 2022. All patients underwent simultaneous culture (either direct or indirect culture, or both) and 16S (pan-bacterial)/18S (pan-fungal) ribosomal RNA (rRNA) PCR-Sanger sequencing. The bacterial/fungal genus and species identified on culture were confirmed using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Relevant clinical data were also collected to analyze for any potential clinico-microbiological correlation. Main outcome measures included the diagnostic yield, test accuracy (including sensitivity and specificity), and inter-test agreement [including percent agreement and Cohen's kappa (k)]. Results: A total of 81 patients (86 episodes of IK) were included in this study. All organisms identified were of bacterial origin. Diagnostic yields were similar among direct culture (52.3%), indirect culture (50.8%), and PCR (43.1%; p = 0.13). The addition of PCR enabled a positive diagnostic yield in 3 (9.7%) direct culture-negative cases. Based on composite reference standard, direct culture had the highest sensitivity (87.5%; 95% CI, 72.4–95.3%), followed by indirect culture (85.4%; 95% CI, 71.6–93.5%) and PCR (73.5%; 95% CI, 59.0–84.6%), with 100% specificity noted in all tests. Pairwise comparisons showed substantial agreement among the three tests (percent agreement = 81.8–86.2%, Cohen's k = 0.67–0.72). Clinico-microbiological correlation demonstrated higher culture-PCR concordance in cases with greater infection severity. Conclusions: This study highlights a similar diagnostic performance of direct culture, indirect culture and 16S rRNA PCR for bacterial keratitis, with substantial inter-test concordance. PCR serves as a useful diagnostic adjuvant to culture, particularly in culture-negative cases or those with lesser disease severity (where culture-PCR concordance is lower)
Glycocalyx shedding is markedly increased during the acute phase of Takotsubo cardiomyopathy
Background: Acute myocardial infarction (AMI) and other forms of myocardial acute oxidative stress are associated with variable “shedding” of the endothelial glycocalyx (GCS) which can be quantitated ex vivo by release into plasma of glycocalyx components such as Syndecan-1 (SD-1). Previous studies have implicated release of both catecholamines and BNP as potential accentuating factors in GCS: since these are prominent aspects of the pathogenesis of Takotsubo cardiomyopathy (TTC), we hypothesised that TTC is associated with increased GCS and the extent of GCS is predictable on the basis of NT-proBNP and catecholamine releases. Methods: SD-1 concentrations were measured in 48 TTC patients acutely and after 3 months, and compared with those in 12 healthy controls, and 17 patients with AMI. Correlations were sought between SD-1 levels markers of severity of TTC episodes in individual patients. Results: Acute SD-1 concentrations in TTC patients were elevated significantly (p < 0.0001, 1-way ANOVA) compared to control values. There were no significant correlations between SD-1 concentrations and any markers of severity of acute TTC episodes, such as NT-proBNP or catecholamine release. Over 3 months, SD-1 concentrations fell significantly (p = 0.0002) to approximately the same values as in control subjects. Conclusions: TTC is associated acutely with a marked increase in GCS. Potentially, GCS might contribute to increased coronary vascular permeability in TTC, thus dissociating development of myocardial oedema from severity of associated inflammation. Prevention of GCS represents a potential therapeutic option in TTC
Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families
Strain-dependent host transcriptional responses to toxoplasma infection are largely conserved in mammalian and avian hosts
Toxoplasma gondii has a remarkable ability to infect an enormous variety of mammalian and avian species. Given this, it is surprising that three strains (Types I/II/III) account for the majority of isolates from Europe/North America. The selective pressures that have driven the emergence of these particular strains, however, remain enigmatic. We hypothesized that strain selection might be partially driven by adaptation of strains for mammalian versus avian hosts. To test this, we examine in vitro, strain-dependent host responses in fibroblasts of a representative avian host, the chicken (Gallus gallus). Using gene expression profiling of infected chicken embryonic fibroblasts and pathway analysis to assess host response, we show here that chicken cells respond with distinct transcriptional profiles upon infection with Type II versus III strains that are reminiscent of profiles observed in mammalian cells. To identify the parasite drivers of these differences, chicken fibroblasts were infected with individual F1 progeny of a Type II x III cross and host gene expression was assessed for each by microarray. QTL mapping of transcriptional differences suggested, and deletion strains confirmed, that, as in mammalian cells, the polymorphic rhoptry kinase ROP16 is the major driver of strain-specific responses. We originally hypothesized that comparing avian versus mammalian host response might reveal an inversion in parasite strain-dependent phenotypes; specifically, for polymorphic effectors like ROP16, we hypothesized that the allele with most activity in mammalian cells might be less active in avian cells. Instead, we found that activity of ROP16 alleles appears to be conserved across host species; moreover, additional parasite loci that were previously mapped for strain-specific effects on mammalian response showed similar strain-specific effects in chicken cells. These results indicate that if different hosts select for different parasite genotypes, the selection operates downstream of the signaling occurring during the beginning of the host's immune response. © 2011 Ong et al
GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health.
Funder: Department of HealthMosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes-CHEK2 and GIGYF1-reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04-11.81], p = 1.3 × 10-10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51-10.61], p = 1.8 × 10-12), 4 kg higher fat mass (p = 1.3 × 10-4), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10-4) and 4.5 kg lower handgrip strength (p = 4.7 × 10-7) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health
- …