64 research outputs found

    Artificial Intelligence Procedure for the Screening of Genetic Syndromes Based on Voice Characteristics

    Get PDF
    : Perceptual and statistical evidence has highlighted voice characteristics of individuals affected by genetic syndromes that differ from those of normophonic subjects. In this paper, we propose a procedure for systematically collecting such pathological voices and developing AI-based automated tools to support differential diagnosis. Guidelines on the most appropriate recording devices, vocal tasks, and acoustical parameters are provided to simplify, speed up, and make the whole procedure homogeneous and reproducible. The proposed procedure was applied to a group of 56 subjects affected by Costello syndrome (CS), Down syndrome (DS), Noonan syndrome (NS), and Smith-Magenis syndrome (SMS). The entire database was divided into three groups: pediatric subjects (PS; individuals < 12 years of age), female adults (FA), and male adults (MA). In line with the literature results, the Kruskal-Wallis test and post hoc analysis with Dunn-Bonferroni test revealed several significant differences in the acoustical features not only between healthy subjects and patients but also between syndromes within the PS, FA, and MA groups. Machine learning provided a k-nearest-neighbor classifier with 86% accuracy for the PS group, a support vector machine (SVM) model with 77% accuracy for the FA group, and an SVM model with 84% accuracy for the MA group. These preliminary results suggest that the proposed method based on acoustical analysis and AI could be useful for an effective, non-invasive automatic characterization of genetic syndromes. In addition, clinicians could benefit in the case of genetic syndromes that are extremely rare or present multiple variants and facial phenotypes

    Chromosome 9p deletion syndrome and sex reversal: novel findings and redefinition of the critically deleted regions

    Get PDF
    Deletions of the short arm of chromosome 9 are associated with two distinct clinical entities. Small telomeric 9p24.3 deletions cause genital anomalies in male subjects, ranging from disorder of gonadal sex to genital differentiation anomalies, while large terminal or interstitial deletions result in 9p-malformation syndrome phenotype. The critical region for non-syndromic 46,XY sex reversal was assigned to a 1 Mb interval of chromosome 9p, extending from the telomere to the DMRT genes cluster. The 9p-syndrome was assigned to bands 9p22.3p24.1, but a phenotypic map has not been established for this condition, probably because of the lack of detailed molecular and/or phenotypic characterization, as well as frequent involvement of additional chromosome rearrangements. Here, we describe a unique patient with a small isolated 9p terminal deletion, characterized by array-CGH and FISH, who shows a complex phenotype with multiple physical anomalies, resembling the 9p-syndrome, disorder of sex development with gonadoblastoma, congenital heart defect and epilepsy. The observed deletion includes the 46,XY sex-reversal critical region, excluding the region so far associated with the 9p-syndrome. Genotype-phenotype correlations are tentatively established comparing our patient to seven other previously reported males with isolated terminal 9p deletions, finely defined at a molecular level. Our observations expand the 9p deletion clinical spectrum, and add significantly to the definition of a 9p-syndrome critical region

    De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment.

    Get PDF
    The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.This work was supported by: UK Medical Research Council Project Grants [MR/M00046X/1], [MR/R026440/1] and Project grant from National Institute of Health Research Biomedical Research Centre at Addenbrooke's Hospital (to E.R.), Fondazione Bambino Gesù (Vite Coraggiose) and Italian Ministry of Health (CCR-2017-23669081) (to M.T.), National Institute for Health Research (NIHR) for the Cambridge Biomedical Research Centre and NIHR BioResource (Grant Number RG65966) (to F.L.R.), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 216370/Z/19/Z) (to J.E.). CIMR was supported by a Wellcome Trust Strategic Award [100140] and Equipment Grant [093026]. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support

    Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species

    Get PDF
    Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.n

    Prevalence of adverse reactions following a passed oral food challenge and factors affecting successful re-introduction of foods. A retrospective study of a cohort of 199 children

    Full text link
    After a passed oral food challenge (OFC), regular and normal food consumption is attended. The main objective of this study is to assess the safety of tested food dietary re-introduction after a passed OFC

    Bladder and bowel dysfunction in Down syndrome with neural tube defect: case report and review of the literature

    Full text link
    Abstract Background Down syndrome is a genetic disorder caused by trisomy of chromosome 21 and characterized by an increased risk of multiorgan involvement. In Down syndrome children, functional constipation and lower urinary tract infections have been described, together with higher risk for incontinence and delayed sphincter control. At present, to our knowledge, no clear association between Down syndrome, Bladder Bowel Dysfunction and neural tube defects has been previously described. Case presentation We describe two female patients with Down syndrome presenting Bladder Bowel Dysfunction in association with neural tube defects, who both underwent personalized multidisciplinary intervention and pelvic floor rehabilitation, with good clinical outcomes. Conclusion At present, no screening program has been established in order to rule out neural tube defects or neurogenic urinary anomalies in Down syndrome patients presenting bowel and/or bladder dysfunction. In our opinion, presence of spinal abnormalities, despite rare, may be contribute to urinary symptoms and should be ruled out in patients presenting progressive or persistent Bladder Bowel Dysfunction. Early diagnosis and management of spinal cord defects associated with neurogenic urinary dysfunction may allow to prevent possible complications
    • …
    corecore