3 research outputs found

    Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume

    No full text
    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cellseeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cellderived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration.Transport and Plannin

    Radiologic Assessment of Interbody Fusion: A Systematic Review on the Use, Reliability, and Accuracy of Current Fusion Criteria

    No full text
    Background: Lumbar interbody fusion (IF) is a common procedure to fuse the anterior spine. However, a lack of consensus on image-based fusion assessment limits the validity and comparison of IF studies. This systematic review aims to (1) report on IF assessment strategies and definitions and (2) summarize available literature on the diagnostic reliability and accuracy of these assessments. Methods: Two searches were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Search 1 identified studies on adult lumbar IF that provided a detailed description of image-based fusion assessment. Search 2 analyzed studies on the reliability of specific fusion criteria/classifications and the accuracy assessed with surgical exploration. Results: A total of 442 studies were included for search 1 and 8 studies for search 2. Fusion assessment throughout the literature was highly variable. Eighteen definitions and more than 250 unique fusion assessment methods were identified. The criteria that showed most consistent use were continuity of bony bridging, radiolucency around the cage, and angular motion <5°. However, reliability and accuracy studies were scarce. Conclusion: This review highlights the challenges in reaching consensus on IF assessment. The variability in IF assessment is very high, which limits the translatability of studies. Accuracy studies are needed to guide innovations of assessment. Future IF assessment strategies should focus on the standardization of computed tomography-based continuity of bony bridging. Knowledge from preclinical and imaging studies can add valuable information to this ongoing discussion.Biomaterials & Tissue Biomechanic

    Anterior longitudinal ligament in diffuse idiopathic skeletal hyperostosis: Ossified or displaced?

    No full text
    Diffuse idiopathic skeletal hyperostosis (DISH) is often theorized to be an ossification of the anterior longitudinal ligament (ALL). Using computed tomography (CT) imaging and cryomacrotome sectioning, we investigated the spatial relationship between the ALL and newly formed bone in DISH to test this hypothesis. In the current study, four human cadaveric spines diagnosed with DISH using CT imaging were frozen and sectioned using a cryomacrotome. Photographs were obtained of the specimen at 125 µm intervals. Manual segmentations of the ALL on cryomacrotome photographs were projected onto the three-dimensional reconstructed CT scans. The presence and location of newly formed bone were assessed in relationship to the location of the ALL. The ALL could be identified and segmented on the photographs at all levels. The ALL was located at the midline at levels where no new bone had formed. At the locations where new bone had abundantly formed, the ALL was displaced towards to the contralateral side and not replaced by bony tissue. The displacement of the—morphologically normal appearing—ALL away from the newly formed bone implies that newly formed bone in DISH may not originate from the ALL.Biomaterials & Tissue Biomechanic
    corecore