4 research outputs found

    A two-step inverse solution for a single dipole cardiac source

    Get PDF
    Introduction: The inverse problem of electrocardiography noninvasively localizes the origin of undesired cardiac activity, such as a premature ventricular contraction (PVC), from potential recordings from multiple torso electrodes. However, the optimal number and placement of electrodes for an accurate solution of the inverse problem remain undetermined. This study presents a two-step inverse solution for a single dipole cardiac source, which investigates the significance of the torso electrodes on a patient-specific level. Furthermore, the impact of the significant electrodes on the accuracy of the inverse solution is studied.Methods: Body surface potential recordings from 128 electrodes of 13 patients with PVCs and their corresponding homogeneous and inhomogeneous torso models were used. The inverse problem using a single dipole was solved in two steps: First, using information from all electrodes, and second, using a subset of electrodes sorted in descending order according to their significance estimated by a greedy algorithm. The significance of electrodes was computed for three criteria derived from the singular values of the transfer matrix that correspond to the inversely estimated origin of the PVC computed in the first step. The localization error (LE) was computed as the Euclidean distance between the ground truth and the inversely estimated origin of the PVC. The LE obtained using the 32 and 64 most significant electrodes was compared to the LE obtained when all 128 electrodes were used for the inverse solution.Results: The average LE calculated for both torso models and using all 128 electrodes was 28.8 ± 11.9 mm. For the three tested criteria, the average LEs were 32.6 ± 19.9 mm, 29.6 ± 14.7 mm, and 28.8 ± 14.5 mm when 32 electrodes were used. When 64 electrodes were used, the average LEs were 30.1 ± 16.8 mm, 29.4 ± 12.0 mm, and 29.5 ± 12.6 mm.Conclusion: The study found inter-patient variability in the significance of torso electrodes and demonstrated that an accurate localization by the inverse solution with a single dipole could be achieved using a carefully selected reduced number of electrodes

    The Effect of Segmentation Variability in Forward ECG Simulation

    Get PDF
    International audienceSegmentation of patient-specific anatomical models is one of the first steps in Electrocardiographic imaging (ECGI). However, the effect of segmentation variability on ECGI remains unexplored. In this study, we assess the effect of heart segmentation variability on ECG simulation. We generated a statistical shape model from segmentations of the same patient and generated 262 cardiac geometries to run in an ECG forward computation of body surface potentials (BSPs) using an equivalent dipole layer cardiac source model and 5 ventricular stimulation protocols. Variability between simulated BSPs for all models and protocols was assessed using Pearson's correlation coefficient (CC). Compared to the BSPs of the mean cardiac shape model, the lowest variability (average CC = 0.98 ± 0.03) was found for apical pacing whereas the highest variability (average CC = 0.90 ± 0.23) was found for right ventricular free wall pacing. Furthermore, low amplitude BSPs show a larger variation in QRS morphology compared to high amplitude signals. The results indicate that the uncertainty in cardiac shape has a significant impact on ECGI

    Inter-operator segmentation variability induces high premature ventricular contractions localization uncertainty at the heart base

    No full text
    International audienceBackgroundElectrocardiographic imaging (ECGI) is a promising tool for the treatment and diagnosis of cardiac arrhythmias. ECGI estimates non-invasively the electrical activity of the heart using body surface potentials (BSPs) obtained at the body surface in combination with a specific CT/MRI based anatomical models and defined electrode positions. In order to solve the ECGI inverse problem the first step to be considered is indeed the image segmentation and mesh generation.ObjectiveOur main purpose is to evaluate the effect of the inter-operator segmentation variability on the PVC localization.MethodsEight different cardiac segmentations from the same single subject CT-scans were performed by researchers within the consortium for Electrocardiographic Imaging. For all generated meshes, eight ventricular stimulation protocols were used; left and right ventricular free walls (LV, RV), apex, left and right ventricular outflow tract (LVOT, RVOT), septum, and two locations at the left and right heart base (LVB, RVB). BSPs were generated using computational models. We designed two test cases: with and without segmentation uncertainty. In test A, no segmentation uncertainty is considered. In test B, we solve the inverse problem for the eight geometries starting from one single BSP generated with a reference heart geometry. For each test case and for each stimulation protocol we computed the inverse solution using the Method of Fundamental Solutions and assessed the Localization Error (LE) of the pacing sites. In order to quantify the effect of segmentation uncertainty we also computed the difference between LEs obtained in tests B and A.ResultsIn test A, the mean LEs for LV, RV, apex, LVOT, RVOT, septum, LVB and RVB pacings are 7, 7, 5, 12, 14, 18, 13, 15 mm, respectively. In test B, the mean LEs are 7, 7, 5, 17, 23, 17, 16, 23 mm, respectively. The average differences between LEs are 0, 0, -1,5, 8, -1, 3, 8 mm, respectively.ConclusionThis study shows that the effect of the segmentation uncertainty on the localization of PVC is more important for RVOT, LVOT, RVB and LVB. We believe that the high uncertainty is due to the variability of segmentations at the base of the heart. These findings suggest that uncertainty in cardiac segmentation can have a significant impact on ECGI and its interpretability in clinical applications; therefore, careful segmentation is strongly recommended, especially at the base of the heart
    corecore