2 research outputs found
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Recommended from our members
Replicative fitness and pathogenicity of primate lentiviruses in lymphoid tissue, primary human and chimpanzee cells: relation to possible jumps to humans.
BACKGROUND: Simian immunodeficiency viruses (SIV) have been jumping between non-human primates in West/Central Africa for thousands of years and yet, the HIV-1 epidemic only originated from a primate lentivirus over 100 years ago. METHODS: This study examined the replicative fitness, transmission, restriction, and cytopathogenicity of 22 primate lentiviruses in primary human lymphoid tissue and both primary human and chimpanzee peripheral blood mononuclear cells. FINDINGS: Pairwise competitions revealed that SIV from chimpanzees (cpz) had the highest replicative fitness in human or chimpanzee peripheral blood mononuclear cells, even higher fitness than HIV-1 group M strains responsible for worldwide epidemic. The SIV strains belonging to the "HIV-2 lineage" (including SIVsmm, SIVmac, SIVagm) had the lowest replicative fitness. SIVcpz strains were less inhibited by human restriction factors than the "HIV-2 lineage" strains. SIVcpz efficiently replicated in human tonsillar tissue but did not deplete CD4+ T-cells, consistent with the slow or nonpathogenic disease observed in most chimpanzees. In contrast, HIV-1 isolates and SIV of the HIV-2 lineage were pathogenic to the human tonsillar tissue, almost independent of the level of virus replication. INTERPRETATION: Of all primate lentiviruses, SIV from chimpanzees appears most capable of infecting and replicating in humans, establishing HIV-1. SIV from other Old World monkeys, e.g. the progenitor of HIV-2, replicate slowly in humans due in part to restriction factors. Nonetheless, many of these SIV strains were more pathogenic than SIVcpz. Either SIVcpz evolved into a more pathogenic virus while in humans or a rare SIVcpz, possibly extinct in chimpanzees, was pathogenic immediately following the jump into human. FUNDING: Support for this study to E.J.A. was provided by the NIH/NIAID R01 AI49170 and CIHR project grant 385787. Infrastructure support was provided by the NIH CFAR AI36219 and Canadian CFI/Ontario ORF 36287. Efforts of J.A.B. and N.J.H. was provided by NIH AI099473 and for D.H.C., by VA and NIH AI AI080313