26 research outputs found

    Motor restlessness

    No full text
    International Journal of Clinical Practice555320-32

    Animal studies in restless legs syndrome.

    No full text
    Although restless legs syndrome (RLS) is a common disorder that has been studied thoroughly in the past decades, the underlying pathophysiology is still not fully understood. However, some attractive hypotheses on the pathogenesis of the disorder have been forwarded. Animal models are an important tool to verify hypotheses and to dissect out the details of pathophysiological mechanisms. Ideally they might serve the development of future treatment strategies. This review discusses the general and specific prerequisites necessary for the establishment of animal models for RLS and summarizes the approaches that have been made

    Clinical characteristics of leg restlessness in Parkinson's disease compared with idiopathic Restless Legs Syndrome

    No full text
    10.1016/j.jns.2015.07.008Journal of the Neurological Sciences3571-Feb109-114JNSC

    Guidelines for the first-line treatment of restless legs syndrome/Willis-Ekbom disease, prevention and treatment of dopaminergic augmentation: A combined task force of the IRLSSG, EURLSSG, and the RLS-foundation.

    No full text
     A Task Force was established by the International Restless Legs Syndrome Study Group (IRLSSG) in conjunction with the European Restless Legs Syndrome Study Group (EURLSSG) and the RLS Foundation (RLS-F) to develop evidence-based and consensus-based recommendations for the prevention and treatment of long-term pharmacologic treatment of dopaminergic-induced augmentation in restless legs syndrome/Willis-Ekbom disease (RLS/WED).The Task Force made the following prevention and treatment recommendations:. As a means to prevent augmentation, medications such as α2δ ligands may be considered for initial RLS/WED treatment; these drugs are effective and have little risk of augmentation. Alternatively, if dopaminergic drugs are elected as initial treatment, then the daily dose should be as low as possible and not exceed that recommended for RLS/WED treatment. However, the physician should be aware that even low dose dopaminergics can cause augmentation. Patients with low iron stores should be given appropriate iron supplementation. Daily treatment by either medication should start only when symptoms have a significant impact on quality of life in terms of frequency and severity; intermittent treatment might be considered in intermediate cases.Treatment of existing augmentation should be initiated, where possible, with the elimination/correction of extrinsic exacerbating factors (iron levels, antidepressants, antihistamines, etc.). In cases of mild augmentation, dopamine agonist therapy can be continued by dividing or advancing the dose, or increasing the dose if there are breakthrough night-time symptoms. Alternatively, the patient can be switched to an α2δ ligand or rotigotine. For severe augmentation the patient can be switched either to an α2δ ligand or rotigotine, noting that rotigotine may also produce augmentation at higher doses with long-term use. In more severe cases of augmentation an opioid may be considered, bypassing α2δ ligands and rotigotine

    Parkin mutations and susceptibility alleles in late-onset Parkinson's disease

    No full text
    Parkin, an E2-dependent ubiquitin protein ligase, carries pathogenic mutations in patients with autosomal recessive juvenile parkinsonism, but its role in the late-onset form of Parkinson's disease (PD) is not firmly established. Previously, we detected linkage of idiopathic PD to the region on chromosome 6 containing the Parkin gene (D6S305, logarithm of odds score, 5.47) in families with at least one subject with age at onset (AAO) younger than 40 years. Mutation analysis of the Parkin gene in the 174 multiplex families from the genomic screen and 133 additional PD families identified mutations in 18% of early-onset and 2% of late-onset families (5% of total families screened). The AAO of patients with Parkin mutations ranged from 12 to 71 years. Excluding exon 7 mutations, the mean AAO of patients with Parkin mutations was 31.5 years. However, mutations in exon 7, the first RING finger (Cys253Trp, Arg256Cys, Arg275Trp, and Asp280Asn) were observed primarily in heterozygous PD patients with a much later AAO (mean AAO, 49.2 years) but were not found in controls in this study or several previous reports (920 chromosomes). These findings suggest that mutations in Parkin contribute to the common form of PD and that heterozygous mutations, especially those lying in exon 7, act as susceptibility alleles for late-onset form of Parkinson disease

    Association study of parkin gene polymorphisms with idiopathic Parkinson disease

    No full text
    Background Previously, we detected linkage of idiopathic Parkinson disease (PD) to the region on chromosome 6 that contains the Parkin gene (D6S305; logarithm of odds score, 5.47) in families with at least one individual with age at onset younger than 40 years (families with early-onset disease). Further study demonstrated the presence of Parkin mutations in this data set. However, previous case-control studies have reported conflicting results regarding the role of more common Parkin polymorphisms as susceptibility alleles for idiopathic PD. Objective To investigate the association of 7 previously studied Parkin single-nucleotide polymorphisms (SNPs) throughout the promoter and most of the open reading frame with PD in a large cohort of patients with primarily late-onset PD. Methods One promoter, 3 intronic, and 3 exonic Parkin SNPs were genotyped in 1580 individuals belonging to 397 families, and their association with PD was evaluated using family-based association tests. Results No significant association (P>.05) between PD and any Parkin SNP allele or genotype was detected. Haplotype analysis and stratification by age at onset or family history also failed to produce significant results. Conclusions These results suggest that these common variants of Parkin are not associated with PD in white patients, although Parkin mutations are known to cause early- and late-onset PD

    Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease

    No full text
    Mitochondrial (mt) impairment, particularly within complex I of the electron transport system, has been implicated in the pathogenesis of Parkinson disease (PD). More than half of mitochondrially encoded polypeptides form part of the reduced nicotinamide adenine dinucleotide dehydrogenase (NADH) complex I enzyme. To test the hypothesis that mtDNA variation contributes to PD expression, we genotyped 10 single-nucleotide polymorphisms (SNPs) that define the European mtDNA haplogroups in 609 white patients with PD and 340 unaffected white control subjects. Overall, individuals classified as haplogroup J (odds ratio [OR] 0.55; 95% confidence interval [CI] 0.34–0.91; P=.02) or K (OR 0.52; 95% CI 0.30–0.90; P=.02) demonstrated a significant decrease in risk of PD versus individuals carrying the most common haplogroup, H. Furthermore, a specific SNP that defines these two haplogroups, 10398G, is strongly associated with this protective effect (OR 0.53; 95% CI 0.39–0.73; P=.0001). SNP 10398G causes a nonconservative amino acid change from threonine to alanine within the NADH dehydrogenase 3 (ND3) of complex I. After stratification by sex, this decrease in risk appeared stronger in women than in men (OR 0.43; 95% CI 0.27–0.71; P=.0009). In addition, SNP 9055A of ATP6 demonstrated a protective effect for women (OR 0.45; 95% CI 0.22–0.93; P=.03). Our results suggest that ND3 is an important factor in PD susceptibility among white individuals and could help explain the role of complex I in PD expression
    corecore