41 research outputs found
An Empirical Evaluation of Zero Resource Acoustic Unit Discovery
Acoustic unit discovery (AUD) is a process of automatically identifying a
categorical acoustic unit inventory from speech and producing corresponding
acoustic unit tokenizations. AUD provides an important avenue for unsupervised
acoustic model training in a zero resource setting where expert-provided
linguistic knowledge and transcribed speech are unavailable. Therefore, to
further facilitate zero-resource AUD process, in this paper, we demonstrate
acoustic feature representations can be significantly improved by (i)
performing linear discriminant analysis (LDA) in an unsupervised self-trained
fashion, and (ii) leveraging resources of other languages through building a
multilingual bottleneck (BN) feature extractor to give effective cross-lingual
generalization. Moreover, we perform comprehensive evaluations of AUD efficacy
on multiple downstream speech applications, and their correlated performance
suggests that AUD evaluations are feasible using different alternative language
resources when only a subset of these evaluation resources can be available in
typical zero resource applications.Comment: 5 pages, 1 figure; Accepted for publication at ICASSP 201
Bayesian Models for Unit Discovery on a Very Low Resource Language
Developing speech technologies for low-resource languages has become a very
active research field over the last decade. Among others, Bayesian models have
shown some promising results on artificial examples but still lack of in situ
experiments. Our work applies state-of-the-art Bayesian models to unsupervised
Acoustic Unit Discovery (AUD) in a real low-resource language scenario. We also
show that Bayesian models can naturally integrate information from other
resourceful languages by means of informative prior leading to more consistent
discovered units. Finally, discovered acoustic units are used, either as the
1-best sequence or as a lattice, to perform word segmentation. Word
segmentation results show that this Bayesian approach clearly outperforms a
Segmental-DTW baseline on the same corpus.Comment: Accepted to ICASSP 201
Linguistic unit discovery from multi-modal inputs in unwritten languages: Summary of the "Speaking Rosetta" JSALT 2017 Workshop
We summarize the accomplishments of a multi-disciplinary workshop exploring
the computational and scientific issues surrounding the discovery of linguistic
units (subwords and words) in a language without orthography. We study the
replacement of orthographic transcriptions by images and/or translated text in
a well-resourced language to help unsupervised discovery from raw speech.Comment: Accepted to ICASSP 201
The Zero Resource Speech Challenge 2019: TTS without T
International audienceWe present the Zero Resource Speech Challenge 2019, which proposes to build a speech synthesizer without any text or pho-netic labels: hence, TTS without T (text-to-speech without text). We provide raw audio for a target voice in an unknown language (the Voice dataset), but no alignment, text or labels. Participants must discover subword units in an unsupervised way (using the Unit Discovery dataset) and align them to the voice recordings in a way that works best for the purpose of synthesizing novel utterances from novel speakers, similar to the target speaker's voice. We describe the metrics used for evaluation , a baseline system consisting of unsupervised subword unit discovery plus a standard TTS system, and a topline TTS using gold phoneme transcriptions. We present an overview of the 19 submitted systems from 10 teams and discuss the main results
The Zero Resource Speech Challenge 2020: Discovering discrete subword and word units
International audienceWe present the Zero Resource Speech Challenge 2020, which aims at learning speech representations from raw audio signals without any labels. It combines the data sets and metrics from two previous benchmarks (2017 and 2019) and features two tasks which tap into two levels of speech representation. The first task is to discover low bit-rate subword representations that optimize the quality of speech synthesis; the second one is to discover word-like units from unsegmented raw speech. We present the results of the twenty submitted models and discuss the implications of the main findings for unsupervised speech learning