85 research outputs found

    Multi-Kernel Object Tracking

    Get PDF
    In this paper, we present an object tracking algorithm for the low-frame-rate video in which objects have fast motion. The conventional mean-shift tracking fails in case the relocation of an object is large and its regions between the consecutive frames do not overlap. We provide a solution to this problem by using multiple kernels centered at the high motion areas. In addition, we improve the convergence properties of the mean-shift by integrating two likelihood terms, background and template similarities, in the iterative update mechanism. Our simulations prove the effectiveness of the proposed method

    Deep Hierarchical Parsing for Semantic Segmentation

    Full text link
    This paper proposes a learning-based approach to scene parsing inspired by the deep Recursive Context Propagation Network (RCPN). RCPN is a deep feed-forward neural network that utilizes the contextual information from the entire image, through bottom-up followed by top-down context propagation via random binary parse trees. This improves the feature representation of every super-pixel in the image for better classification into semantic categories. We analyze RCPN and propose two novel contributions to further improve the model. We first analyze the learning of RCPN parameters and discover the presence of bypass error paths in the computation graph of RCPN that can hinder contextual propagation. We propose to tackle this problem by including the classification loss of the internal nodes of the random parse trees in the original RCPN loss function. Secondly, we use an MRF on the parse tree nodes to model the hierarchical dependency present in the output. Both modifications provide performance boosts over the original RCPN and the new system achieves state-of-the-art performance on Stanford Background, SIFT-Flow and Daimler urban datasets.Comment: IEEE CVPR 201

    Layered Interpretation of Street View Images

    Full text link
    We propose a layered street view model to encode both depth and semantic information on street view images for autonomous driving. Recently, stixels, stix-mantics, and tiered scene labeling methods have been proposed to model street view images. We propose a 4-layer street view model, a compact representation over the recently proposed stix-mantics model. Our layers encode semantic classes like ground, pedestrians, vehicles, buildings, and sky in addition to the depths. The only input to our algorithm is a pair of stereo images. We use a deep neural network to extract the appearance features for semantic classes. We use a simple and an efficient inference algorithm to jointly estimate both semantic classes and layered depth values. Our method outperforms other competing approaches in Daimler urban scene segmentation dataset. Our algorithm is massively parallelizable, allowing a GPU implementation with a processing speed about 9 fps.Comment: The paper will be presented in the 2015 Robotics: Science and Systems Conference (RSS
    • …
    corecore