96 research outputs found
Electrically controlled superconducting states at the heterointerface SrTiO/LaAlO
We study the symmetry of Cooper pair in a two-dimensional Hubbard model with
the Rashba-type spin-orbit interaction as a minimal model of electron gas
generated at a heterointerface of SrTiO/LaAlO. Solving the Eliashberg
equation based on the third-order perturbation theory, we find that the gap
function consists of the mixing of the spin-singlet -wave component and
the spin-triplet -wave one due to the broken inversion symmetry
originating from the Rashba-type spin-orbit interaction. The ratio of the
d-wave and the p-wave component continuously changes with the carrier
concentration. We propose that the pairing symmetry is controlled by tuning the
gate voltage.Comment: 4 pages, 4 figures; added reference
Enhanced triplet superconductivity in noncentrosymmetric systems
We study pairing symmetry of noncentrosymmetric superconductors based on the
extended Hubbard model on square lattice near half-filling, using the random
phase approximation. We show that d+f-wave pairing is favored and the triplet
f-wave state is enhanced by Rashba type spin-orbit coupling originating from
the broken inversion symmetry. The enhanced triplet superconductivity stems
from the increase of the effective interaction for the triplet pairing and the
reduction of the spin susceptibility caused by the Rashba type spin-orbit
coupling which lead to the increase of the triplet component and the
destruction of the singlet one, respectively.Comment: 5 pages, 5 figure
Coherence effect in a two-band superconductor: Application to iron pnictides
From a theoretical point of view, we propose an experimental method to
determine the pairing symmetry of iron pnictides. We focus on two kinds of
pairing symmetries, and , which are strong candidates for the
pairing symmetry of iron pnictides. For each of these two symmetries, we
calculate both the density and spin response functions by using the two-band
BCS model within the one-loop approximation. As a result, a clear difference is
found between the - and -wave states in the temperature
dependence of the response functions at nesting vector , which connects
the hole and electron Fermi surfaces. We point out that this difference comes
from the coherence effect in the two-band superconductor. We suggest that the
pairing symmetry could be clarified by observing the temperature dependence of
both the density and spin structure factors at the nesting vector in
neutron scattering measurements.Comment: 15 pages, 7 figures, 1 tabl
Superconductivity in the Three-Fold Charge-Ordered Metal of the Triangular-Lattice Extended Hubbard Model
The quarter-filling extended Hubbard model on the triangular lattice is
studied to explore pairing instability in the three-fold charge-ordered (CO)
metal. We derive a second-order strong-coupling effective Hamiltonian of doped
carriers into the three-fold CO insulator at electron density of , and
then study the - and -wave superconductivities down to by
using the BCS mean-field approximation. It is found that the triplet -wave
pairing is more stable than the -wave one. We also point out that this
coexisting state of the charge ordering and superconductivity is possible to
have critical temperature .Comment: 4 pages, 7 figure
Spin-Dependent Mass Enhancement under Magnetic Field in the Periodic Anderson Model
In order to study the mechanism of the mass enhancement in heavy fermion
compounds in the presence of magnetic field, we study the periodic Anderson
model using the fluctuation exchange approximation. The resulting value of the
mass enhancement factor z^{-1} can become up to 10, which is significantly
larger than that in the single-band Hubbard model. We show that the difference
between the magnitude of the mass enhancement factor of up spin (minority spin)
electrons z^{-1}_up and that of down spin (majority spin) electrons z^{-1}_down
increases by the applied magnetic field B//z, which is consistent with de
Haas-van Alphen measurements for CeCoIn_5, CeRu_2Si_2 and CePd_2Si_2. We
predict that z^{-1}_up >z^{-1}_down in many Ce compounds, whereas z^{-1}_up <
z^{-1}_down in Yb compounds.Comment: 5 pages, 4 figure
Study of Ni-doping Effect of Specific Heat and Transport Properties for LaFe1-yNiyAsO0.89F0.11
Specific heats and transport quantities of the LaFe1-yNiyAsO0.89F0.11 system
have been measured, and the results are discussed together with those reported
previously by our group mainly for LaFe1-yCoyAsO0.89F0.11 and
LaFeAsO0.89-xF0.11+x systems. The y dependence of the electronic specific heat
coefficient gamma can basically be understood by using the rigid-band picture,
where Ni ions provide 2 electrons to the host conduction bands and behave as
nonmagnetic impurities. The superconducting transition temperature Tc of
LaFe1-yNiyAsO0.89F0.11 becomes zero, as the carrier density p (=2y+0.11) doped
to LaFeAsO reaches its critical value p_c_ ~0.2. This p_c_ value of ~0.2 is
commonly observed for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems,
in which the relations p = x+0.11 and p = y+0.11 hold, respectively. As we
pointed out previously, the critical value corresponds to the disappearance of
the hole-Fermi surface. These results indicate that the carrier number solely
determines the Tc value. We have not observed appreciable effects of pair
breaking, which originates from the nonmagnetic impurity scattering of
conduction electrons and strongly suppresses T_c_ values of systems with
sign-reversing of the order parameter over the Fermi surface(s). On the basis
of the results, the so-called s_+-_ symmetry of the order parameter with the
sign-reversing is excluded.Comment: 4 pages, 7 figures, submitted to J. Phys. Soc. Jpn, (modified
version
A Twisted Ladder: relating the Fe superconductors to the high cuprates
We construct a 2-leg ladder model of an Fe-pnictide superconductor and
discuss its properties and relationship with the familiar 2-leg cuprate model.
Our results suggest that the underlying pairing mechanism for the Fe-pnictide
superconductors is similar to that for the cuprates.Comment: 5 pages, 4 figure
Superconductivity induced by inter-band nesting in the three-dimensional honeycomb lattice
In order to study whether the inter-band nesting can favor superconductivity
arising from electron-electron repulsion in a three-dimensional system, we have
looked at the repulsive Hubbard model on a stack of honeycomb (i.e.,
non-Bravais) lattices with the FLEX method, partly motivated by the
superconductivity observed in MgB2. By systematically changing the shape of
Fermi surface with varied band filling n and the third-direction hopping, we
have found that the pair scattering across the two-bands is indeed found to
give rise to gap functions that change sign across the bands and behave as an
s- or d-wave within each band. This implies (a) the electron repulsion can
assist gapful pairing when a phonon-mechanism pairing exists, and (b) the
electron repulsion alone, when strong enough, can give rise to a d-wave-like
pairing, which should be, for a group-theoretic reason, a time-reversal broken
d+id with point nodes in the gap
Direct optical excitation of two and three magnons in α-Fe₂O₃
Direct excitation of two and three magnons is observed in midinfrared absorption and Raman
scattering spectra of α-Fe₂O₃ crystals. These polarization characteristics and the spectra themselves
are shown to be understood from group-theoretical point of view. The microscopic mechanism
of three-magnon excitation is proposed in addition to that of well-known two-magnon excitation
process
Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2
Measurements of the superconducting transition temperature, T_c, under
hydrostatic pressure via bulk AC susceptibility were carried out on several
concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The
pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration
dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of
BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This
demonstrates that phosphorous substitution and physical pressure result in
similar superconducting phase diagrams, and that phosphorous substitution does
not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical
Society of Japa
- …