7 research outputs found

    Core Proteome of the Minimal Cell: Comparative Proteomics of Three Mollicute Species

    Get PDF
    Mollicutes (mycoplasmas) have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a ‘minimal cell’: a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions

    dE2F2-Independent Rescue of Proliferation in Cells Lacking an Activator dE2F1â–¿

    No full text
    In Drosophila melanogaster, the loss of activator de2f1 leads to a severe reduction in cell proliferation and repression of E2F targets. To date, the only known way to rescue the proliferation block in de2f1 mutants was through the inactivation of dE2F2. This suggests that dE2F2 provides a major contribution to the de2f1 mutant phenotype. Here, we report that in mosaic animals, in addition to de2f2, the loss of a DEAD box protein Belle (Bel) also rescues proliferation of de2f1 mutant cells. Surprisingly, the rescue occurs in a dE2F2-independent manner since the loss of Bel does not relieve dE2F2-mediated repression. In the eye disc, bel mutant cells fail to undergo a G1 arrest in the morphogenetic furrow, delay photoreceptor recruitment and differentiation, and show a reduction of the transcription factor Ci155. The down-regulation of Ci155 is important since it is sufficient to partially rescue proliferation of de2f1 mutant cells. Thus, mutation of bel relieves the dE2F2-mediated cell cycle arrest in de2f1 mutant cells through a novel Ci155-dependent mechanism without functional inactivation of the dE2F2 repressor

    Quality Management in Healthcare

    No full text
    corecore