171 research outputs found

    Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region.</p> <p>Methods</p> <p>Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed.</p> <p>Results</p> <p>An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations.</p> <p>Conclusion</p> <p>This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.</p

    Planning for compound hazards during the COVID-19 pandemic: The role of climate information systems

    Get PDF
    Roundtable on Compound Hazards and COVID-19 What: An online panel with leading experts in compound hazard research, preparedness, and response, attended by over 80 online participants, met to discuss hazard response in the context of COVID-19. When: 30 June 2021 Where: Online, convened by the World Meteorological Organization and hosted by the American Geophysical UnionPeer Reviewed"Article signat per 12 autors/es: Benjamin F. Zaitchik, Judy Omumbo, Rachel Lowe, Maarten van Aalst, Liana O. Anderson, Erich Fischer, Charlotte Norman, Joanne Robbins, Rosa Barciela, Juli Trtanj, Rosa von Borries, and Jürg Luterbacher"Postprint (published version

    Wealth, mother's education and physical access as determinants of retail sector net use in rural Kenya

    Get PDF
    BACKGROUND: Insecticide-treated bed nets (ITN) provide real hope for the reduction of the malaria burden across Africa. Understanding factors that determine access to ITN is crucial to debates surrounding the optimal delivery systems. The influence of homestead wealth on use of nets purchased from the retail sector is well documented, however, the competing influence of mother's education and physical access to net providers is less well understood. METHODS: Between December 2004 and January 2005, a random sample of 72 rural communities was selected across four Kenyan districts. Demographic, assets, education and net use data were collected at homestead, mother and child (aged < 5 years) levels. An assets-based wealth index was developed using principal components analysis, travel time to net sources was modelled using geographic information systems, and factors influencing the use of retail sector nets explored using a multivariable logistic regression model. RESULTS: Homestead heads and guardians of 3,755 children < 5 years of age were interviewed. Approximately 15% (562) of children slept under a net the night before the interview; 58% (327) of the nets used were purchased from the retail sector. Homestead wealth (adjusted OR = 10.17, 95% CI = 5.45–18.98), travel time to nearest market centres (adjusted OR = 0.51, 95% CI = 0.37–0.72) and mother's education (adjusted OR = 2.92, 95% CI = 1.93–4.41) were significantly associated with use of retail sector nets by children aged less than 5 years. CONCLUSION: Approaches to promoting access to nets through the retail sector disadvantage poor and remote communities where mothers are less well educated

    Web-based climate information resources for malaria control in Africa

    Get PDF
    Malaria remains a major public health threat to more than 600 million Africans and its control is recognized as critical to achieving the Millennium Development Goals. The greatest burden of malaria in Africa occurs in the endemic regions where the disease pathogen is continuously present in the community. These regions are characterized by an environment that is conducive to interactions between the Anopheles mosquito, malaria parasites and human hosts, as well as housing of generally poor quality, which offers little protection from mosquito-human contact. Epidemic malaria tends to occur along the geographical margins of endemic regions, when the equilibrium between the human, parasite and mosquito vector populations is occasionally disturbed and a sharp but temporary increase in disease incidence results. When malaria control measures are inadequate, as is the case in much of sub-Saharan Africa, the disease distribution is closely linked with seasonal patterns of the climate and local environment. In the absence of good epidemiological data on malaria distribution in Africa, climate information has long been used to develop malaria risk maps that illustrate the boundaries of 'climatic suitability for endemic transmission.' The best known of these are produced by the Pan-African-based MARA Collaboration. This paper describes the development of additional malaria suitability maps which have been produced in an online, interactive format to enable temporal information (i.e., seasonality of climate conditions) to be queried and displayed along with spatial information. These maps and the seasonal information that they contain should be useful to the malaria control and health service communities for their planning and operational activities

    Health and Climate–Needs

    Get PDF
    This paper describes the needs for climate risk management and information services for the health sector to serve research, educational and operational needs of ministries of health and their partners, those agencies that support broader public health service provision as well as respond to epidemics and emergencies. While climate information is considered highly relevant to helping guide improvements in public health provision, to date this information is largely underutilized. We explore some of the gaps in satisfying these needs, and we make recommendations to help fill the identified gaps

    Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data

    Get PDF
    Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling

    Testing a multi-malaria-model ensemble against 30 years of data in the Kenyan highlands

    Get PDF
    Background: Multi-model ensembles could overcome challenges resulting from uncertainties in models’ initial conditions, parameterization and structural imperfections. They could also quantify in a probabilistic way uncertainties in future climatic conditions and their impacts. Methods: A four-malaria-model ensemble was implemented to assess the impact of long-term changes in climatic conditions on Plasmodium falciparum malaria morbidity observed in Kericho, in the highlands of Western Kenya, over the period 1979–2009. Input data included quality controlled temperature and rainfall records gathered at a nearby weather station over the historical periods 1979–2009 and 1980–2009, respectively. Simulations included models’ sensitivities to changes in sets of parameters and analysis of non-linear changes in the mean duration of host’s infectivity to vectors due to increased resistance to anti-malarial drugs. Results: The ensemble explained from 32 to 38% of the variance of the observed P. falciparum malaria incidence. Obtained R2-values were above the results achieved with individual model simulation outputs. Up to 18.6% of the variance of malaria incidence could be attributed to the +0.19 to +0.25°C per decade significant long-term linear trend in near-surface air temperatures. On top of this 18.6%, at least 6% of the variance of malaria incidence could be related to the increased resistance to anti-malarial drugs. Ensemble simulations also suggest that climatic conditions have likely been less favourable to malaria transmission in Kericho in recent years. Conclusions: Long-term changes in climatic conditions and non-linear changes in the mean duration of host’s infectivity are synergistically driving the increasing incidence of P. falciparum malaria in the Kenyan highlands. User-friendly, online-downloadable, open source mathematical tools, such as the one presented here, could improve decision-making processes of local and regional health authorities
    corecore