64 research outputs found

    Exploring the binding interactions of structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase: Spectroscopic approach coupled with molecular docking

    Get PDF
    regulation of α-amylase activity is now becoming a promising management option for type 2 diabetes. The present study investigated the binding interactions of three structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase to ascertain the affinity of the ligands for α-amylase using spectroscopic and molecular docking methods. The ligands were characterized using 1H and 31P NMR spectroscopy and CHN analysis. Diselenoimidodiphosphinate ligand (DY300), dithioimidodiphosphinate ligand (DY301), and thioselenoimidodiphosphinate ligand (DY302) quenched the intrinsic fluorescence intensity of α-amylase via a static quenching mechanism with bimolecular quenching constant (Kq) values in the order of x1011 M-1s-1, indicating formation of enzyme-ligand complexes. A binding stoichiometry of n≈1 was observed for α-amylase, with high binding constants (Ka). α-Amylase inhibition was as follow: Acarbose > DY301>DY300>DY302. Values of thermodynamic parameters obtained at temperatures investigated (298, 304 and 310 K) revealed spontaneous complex formation (ΔG<0) between the ligands and α-amylase; the main driving forces were hydrophobic interactions (with DY300, DY301, except DY302). UV–visible spectroscopy and F¨orster resonance energy transfer (FRET) affirmed change in enzyme conformation and binding occurrence. Molecular docking revealed ligands interaction with α-amylase via some key catalytic site amino acid residues (Asp197, Glu233 and Asp300). DY301 perhaps showed highest α-amylase inhibition (IC50, 268.11 ± 0.74 μM) due to its moderately high affinity and composition of two sulphide bonds unlike the others. This study might provide theoretical basis for development of novel α-amylase inhibitors from dichalcogenoimidodiphosphinate ligands for management of postprandial hyperglycemia

    Disinfection of water with new chitosan-modified hybrid clay composite adsorbent

    Get PDF
    Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA1:5 (Chitosan: nHYCA = 1:5). This composite adsorbent had a maximum adsorption removal value of 4.07 × 106 cfu/mL for V. cholerae after 120 min, 1.95 × 106 cfu/mL for E. coli after ∼180 min and 3.25 × 106 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity (qmax) of Ch-nHYCA1:5 composite adsorbent for the removal of E. coli with a qmax of 103.07 mg/g (7.93 × 107 cfu/mL) and V. cholerae with a qmax of 154.18 mg/g (1.19 × 108 cfu/mL) while the Sips model best described S. typhi adsorption by Ch-nHYCA1:5 composite with an estimated qmax of 83.65 mg/g (6.43 × 107 cfu/mL). These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA1:5) for water treatment

    a-Amylase inhibition, anti-glycation property and characterization of the binding interaction of citric acid with a-amylase using multiple spectroscopic, kinetics and molecular docking approaches

    Get PDF
    The quest to suppress complications associated with diabetes mellitus is ever increasing, while food additives and preservatives are currently being considered to play additional roles besides their uses in food enhancement and preservation. In the present study, the protective prowess of a common food preservative (citric acid, CA) against advanced glycation end-products (AGEs) formation and its binding interaction mechanism with a-amylase (AMY), an enzyme linked with hyperglycemia management, were examined. Enzyme inhibition kinetics, intrinsic fluorescence, synchronous and 3D fluorescence spectroscopies, ultraviolet–visible (UV–Vis) absorption spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, thermodynamics, and molecular docking analyses were employed. Results obtained showed that citric acid decreased a-amylase activity via mixed inhibition (IC50 = 5.01 ± 0.87 mM, Kic = 2.42 mM, Kiu = 160.34 mM) and suppressed AGEs formation (IC50 = 0.795 ± 0.001 mM). The intrinsic fluorescence of free a-amylase was quenched via static mechanism with high bimolecular quenching constant (Kq) and binding constant (Ka) values. Analysis of thermodynamic properties revealed that AMY-CA complex was spontaneously formed (DG DH), with involvement of electrostatic forces. UV–Vis, FT-IR and 3D fluorescence spectroscopies affirmed alterations in aamylase native conformation due to CA binding interaction. CA interacted with His-101, Asp-197, His- 299, and Glu-233 within AMY active site. Our findings indicated that CA could impair formation of AGEs and interact with a-amylase to slow down starch hydrolysis; vital properties in management of type 2 diabetes complications
    • …
    corecore