4 research outputs found

    Review on thermal, thermo-mechanical and thermal stress distribution during friction stir welding

    Get PDF
    Abstract: Thermal has significant effects on the metal structure during welding process; it plays vital roles in rearranging molecular structure of the metal being welded. It is of great importance to have the knowledge of thermal, temperature, thermo-mechanical and heat distribution on the workpiece in friction stir welding as this will help in designing process and the model parameters for welding application in the following welded joints, edge butt, lap, square butt, T lap, fillet, multiple lap etc. The physics of heat generation must be explored in order to understand the workability of friction stir welding (FSW). The FSW process begun with initial friction of mechanical that took place between the tool and the welded surface resulting in the generation of heat. Since the discovery of Friction Stir Welding (FSW) in 1991, many researchers have done tremendous investigations into the process and many experimental, theoretical, numerical, empirical, computational and analytical methods have been carried out in order to analyse and optimize FSW and to understand the complex mechanism in friction stir welding at the same time to deal with effects of various parameters relating to thermal profile during the process of FSW

    Data on microhardness and structural analysis of friction stir spot welded lap joints of AA5083-H116

    Get PDF
    Friction stir spot welding (FSSW) was established to compete reasonably with the reverting, bolting, adhesive bonding as well as resistance spot welding (RSW) which have been used in the past for lap joining in automobile, aerospace, marine, railways, defence and shipbuilding industries. The use of these ancient and conventional joining techniques had led to increasing material cost, installation labour, and additional weight in the aircraft, shipbuilding, and other areas of applications. All these are disadvantages that can be overcome using FSSW. This research work carried out friction stir spot welding on 5058-H116 aluminium alloy by employing rotational speed in the step of 300 rpm ranges from 600 rpm to 1200 rpm with a no travel speed. It was noted that the dwell times were in the step of 5 s varying from 5 s to 15 s while the tool plunge rate was maintained at 30 mm/min. In this dataset, a cylindrical tapered rotating H13 Hot-working steel tool was used with a probe length of 5 mm and probe diameter of 6 mm, it has a shoulder diameter of 18 mm. The tool penetration depth (plunge) was maintained at 0.2 mm and the tool tilt angle at 2°. Structural integrity was car-ried out using Rigaku ultima IV multifunctional X-ray diffractometer (XRD) with a scan voltage of 40 kV and scan current of 30 mA. This was used to determine crystallite sizes, peak intensity, d-spacing, full width at half maximum intensity (FWHM) of the diffraction peak. TH713 digital microhardness equipment with diamond indenter was used for microhardness data acquisition following ASTM E92–82 standard test. The average Vickers hardness data values at different zones of the spot-welds were captured and presented

    Data on microhardness and structural analysis of friction stir spot welded lap joints of AA5083-H116

    Get PDF
    Friction stir spot welding (FSSW) was established to compete reasonably with the reverting, bolting, adhesive bonding as well as resistance spot welding (RSW) which have been used in the past for lap joining in automobile, aerospace, marine, railways, defence and shipbuilding industries. The use of these ancient and conventional joining techniques had led to increasing material cost, installation labour, and additional weight in the aircraft, shipbuilding, and other areas of applications. All these are disadvantages that can be overcome using FSSW. This research work carried out friction stir spot welding on 5058-H116 aluminium alloy by employing rotational speed in the step of 300 rpm ranges from 600 rpm to 1200 rpm with a no travel speed. It was noted that the dwell times were in the step of 5 s varying from 5 s to 15 s while the tool plunge rate was maintained at 30 mm/min. In this dataset, a cylindrical tapered rotating H13 Hot-working steel tool was used with a probe length of 5 mm and probe diameter of 6 mm, it has a shoulder diameter of 18 mm. The tool penetration depth (plunge) was maintained at 0.2 mm and the tool tilt angle at 2°. Structural integrity was car-ried out using Rigaku ultima IV multifunctional X-ray diffractometer (XRD) with a scan voltage of 40 kV and scan current of 30 mA. This was used to determine crystallite sizes, peak intensity, d-spacing, full width at half maximum intensity (FWHM) of the diffraction peak. TH713 digital microhardness equipment with diamond indenter was used for microhardness data acquisition following ASTM E92–82 standard test. The average Vickers hardness data values at different zones of the spot-welds were captured and presented

    Temperature and Die Angular Effect on Tensile Strength, Hardness, Extrusion Load and Flow Stress in Aluminum 6063 Processed by Equal Channel Angular Extrusion Method

    No full text
    Developing aluminum with good mechanical properties like hardness, tensile strength, and normal flow stress, Equal Channel Angular Extrusion (ECAE) method has been suggested as a suitable metal forming process. The load applied and extrusion temperature normally infl uences the flow stress behavior in extruded products and de- termine their mechanical properties. Consequently, how these factors affect mechanical behavior and flow stress of Al 6063 processed by ECAE was examined in this study. Extrusion temperatures were 350°C, 425°C, and 500°C with die angles of 130°, 140°, and 150°. 5 mm/s of ram speed was applied. Each extrudate’s tensile strength and hardness were measured using a Universal Testing Machine and a Rockwell hardness tester. Samples with equal dimensions and properties were also modeled using the Qform software at the extended die angle and temperature for proper analysis of flow stress in the extrudates. According to experimental results, the temperature had a greater effect on the tensile strength and hardness of the billet than the die angle. The extrudates’ grains also became finer as the billet temperature rose. Simulation findings showed that higher billet temperature led to a decrease in the extrudates’ flow stress. The simulation also demonstrated that billet temperature had a greater impact on extrusion load than die angle, with a maximum extrusion load of 5.5 MN being attained at 350 °C
    corecore