6 research outputs found

    Epidemiological aspects of some equine viral diseases

    Get PDF
    Although different equine viruses’ outbreaks have been recorded. However, the most important ones in are the African horse sickness virus (AHSV), equine influenza virus (EIV), equine viral arteritis (EVA), Equine infectious anaemia virus (EIAV), and equine herpes viruses (EHV). To combat these diseases, it is imperative to understand their epidemiological aspects. So, the current review aims to highlight some epidemiological aspects including; causative agents, clinical forms, history, prevalence and geographical distribution, source of infection, and methods of transmission. The AHSV mainly causes pulmonary, and cardiac forms with high morbidity and mortality rates in Africa. The EIV is found all over the world and results in respiratory signs. The EVA has low morbidity and mortality rates and is mainly found in the Americas and Europe, its significance is due to the reproductive problems as abortion in mares and subfertility in stallions. The EIAV has low morbidity and mortality rates and causes long time course disease mainly of fever, and chronic anaemia or death. The EHVs are the current most important pathogens due to their endemicity all over the world and their high morbidity. It causes respiratory, abortion, neonatal, and sometimes neurological manifestations. Aerosols and body excretions are the main sources of infection with EIV, EVA, and EHV. Venereal EVA transmission occurs through natural breeding or artificial insemination with the semen of infected or carrier stallions. The spreading of arboviruses is greatly affected by the vector activity like the AHSV which transmitted by the the Culicoide. imicola biting midges, and the EIAV by family Tabanidae. In general, it is recommended to take all epidemiological measures, including vaccinations and vector control, to limit the spread of such diseases and reduce economic losses

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Gene polymorphisms of Patatin-like phospholipase domain containing 3 (PNPLA3), adiponectin, leptin in diabetic obese patients.

    No full text
    Obesity leads a crucial importance in metabolic disorders, as well as type 2 diabetes mellitus. Our present study was designed to assess the potential role of irisin, adiponectin, leptin and gene polymorphism of PNPLA3, leptin and adiponectin as predictive markers of diabetes associated with obesity. One hundred eighty subjects were distributed to three groups including; healthy non-diabetic non obese volunteers as a control group, diabetic non obese group, and diabetic obese group (n = 60 for each group). Fasting blood samples of all groups were collected to determine fasting blood glucose, insulin levels, insulin resistance, total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triacylglycerol, irisin, adiponectin, leptin; as well as, polymorphism of PNPLA3, adiponectin and leptin. The results showed that glucose, insulin resistance, total cholesterol, irisin, leptin, LDL-C, triacylglycerol concentrations were significantly increased, however, insulin, HDL-C, adiponectin were significantly decreased in diabetic obese patients in relation to diabetic non-obese patients as well as in healthy volunteers. The polymorphism of PNPLA3 rs738409 was linearly related to irisin and leptin but was not related with circulating concentrations of adiponectin. We concluded that increased irisin and leptin levels can predict the insulin resistance in obese patients. Moreover, patients who have mutant genotype of PNPLA3 I148 gene (rs738409) C>G, ADIPOQ gene (rs266729) G>C and LEP gene (rs2167270) G>A showed a significant higher susceptibility rate for DM in obese people than those with wild type. This could be considered as an adjustable retort to counter the impact of obesity on glucose homeostasis

    Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat

    No full text
    A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness

    Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat

    No full text
    A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness
    corecore