4 research outputs found
A method to measure the quenching factor for recoil energy of oxygen in bismuth germanium oxide scintillators
Bismuth germanium oxide (, BGO) scintillation
crystals are widely used as detectors in the fields of particle physics and
astrophysics due to their high density, and thus higher efficiency for
gamma-ray detection. Owing to their good chemical stability, they can be used
in any environment. For rare-event searches, such as dark matter and coherent
elastic neutrino-nucleus scattering, BGO crystals are essential to comprehend
the response of nuclear recoil. In this study, we have analyzed the events of
neutron elastic scattering with oxygen in BGO crystals. Then, we have measured
the quenching factor for oxygen recoil energy in the BGO crystal as a function
of recoil energy by using a monoenergetic neutron source.Comment: 14 pages, 11 figures, 1 tabl
Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande
International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance
Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande
International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance