63 research outputs found
Spatio-temporal Video Parsing for Abnormality Detection
Abnormality detection in video poses particular challenges due to the
infinite size of the class of all irregular objects and behaviors. Thus no (or
by far not enough) abnormal training samples are available and we need to find
abnormalities in test data without actually knowing what they are.
Nevertheless, the prevailing concept of the field is to directly search for
individual abnormal local patches or image regions independent of another. To
address this problem, we propose a method for joint detection of abnormalities
in videos by spatio-temporal video parsing. The goal of video parsing is to
find a set of indispensable normal spatio-temporal object hypotheses that
jointly explain all the foreground of a video, while, at the same time, being
supported by normal training samples. Consequently, we avoid a direct detection
of abnormalities and discover them indirectly as those hypotheses which are
needed for covering the foreground without finding an explanation for
themselves by normal samples. Abnormalities are localized by MAP inference in a
graphical model and we solve it efficiently by formulating it as a convex
optimization problem. We experimentally evaluate our approach on several
challenging benchmark sets, improving over the state-of-the-art on all standard
benchmarks both in terms of abnormality classification and localization.Comment: 15 pages, 12 figures, 3 table
Deep Unsupervised Similarity Learning using Partially Ordered Sets
Unsupervised learning of visual similarities is of paramount importance to
computer vision, particularly due to lacking training data for fine-grained
similarities. Deep learning of similarities is often based on relationships
between pairs or triplets of samples. Many of these relations are unreliable
and mutually contradicting, implying inconsistencies when trained without
supervision information that relates different tuples or triplets to each
other. To overcome this problem, we use local estimates of reliable
(dis-)similarities to initially group samples into compact surrogate classes
and use local partial orders of samples to classes to link classes to each
other. Similarity learning is then formulated as a partial ordering task with
soft correspondences of all samples to classes. Adopting a strategy of
self-supervision, a CNN is trained to optimally represent samples in a mutually
consistent manner while updating the classes. The similarity learning and
grouping procedure are integrated in a single model and optimized jointly. The
proposed unsupervised approach shows competitive performance on detailed pose
estimation and object classification.Comment: Accepted for publication at IEEE Computer Vision and Pattern
Recognition 201
- …