41 research outputs found

    Reinforcement Learning with Intrinsic Affinity for Personalized Asset Management

    Get PDF
    The common purpose of applying reinforcement learning (RL) to asset management is the maximization of profit. The extrinsic reward function used to learn an optimal strategy typically does not take into account any other preferences or constraints. We have developed a regularization method that ensures that strategies have global intrinsic affinities, i.e., different personalities may have preferences for certain assets which may change over time. We capitalize on these intrinsic policy affinities to make our RL model inherently interpretable. We demonstrate how RL agents can be trained to orchestrate such individual policies for particular personality profiles and still achieve high returns

    Stable Encoding of Large Finite-State Automata in Recurrent Neural Networks with Sigmoid Discriminants

    Get PDF
    We propose an algorithm for encoding deterministic finite-state automata (DFAs) in second-order recurrent neural networks with sigmoidal discriminant function and we prove that the languages accepted by the constructed network and the DFA are identical. The desired finite-state network dynamics is achieved by programming a small subset of all weights. A worst case analysis reveals a relationship between the weight strength and the maximum allowed network size which guarantees finite-state behavior of the constructed network. We illustrate the method by encoding random DFAs with 10, 100, and 1,000 states. While the theory predicts that the weight strength scales with the DFA size, we find the weight strength to be almost constant for all the experiments. These results can be explained by noting that the generated DFAs represent average cases. We empirically demonstrate the existence of extreme DFAs for which the weight strength scales with DFA size. (Also cross-referenced as UMIACS-TR-94-101

    Constructing Deterministic Finite-State Automata in Recurrent Neural Networks

    Get PDF
    Recurrent neural networks that are {\it trained} to behave like deterministic finite-state automata (DFAs) can show deteriorating performance when tested on long strings. This deteriorating performance can be attributed to the instability of the internal representation of the learned DFA states. The use of a sigmoidal discriminant function together with the recurrent structure contribute to this instability. We prove that a simple algorithm can {\it construct} second-order recurrent neural networks with a sparse interconnection topology and sigmoidal discriminant function such that the internal DFA state representations are stable, i.e. the constructed network correctly classifies strings of {\it arbitrary length}. The algorithm is based on encoding strengths of weights directly into the neural network. We derive a relationship between the weight strength and the number of DFA states for robust string classification. For a DFA with nn states and mm input alphabet symbols, the constructive algorithm generates a ``programmed" neural network with O(n)O(n) neurons and O(mn)O(mn) weights. We compare our algorithm to other methods proposed in the literature. Revised in February 1996 (Also cross-referenced as UMIACS-TR-95-50

    Performance comparison of particle swarm optimization with traditional clustering algorithms used in self organizing map

    No full text
    Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM

    Rule Revision with Recurrent Neural Networks

    No full text
    Recurrent neural networks readily process, recognize and generate temporal sequences. By encoding grammatical strings as temporal sequences, recurrent neural networks can be trained to behave like deterministic sequential finite-state automata. Algorithms have been developed for extracting grammatical rules from trained networks. Using a simple method for inserting prior knowledge (or rules) into recurrent neural networks, we show that recurrent neural networks are able to perform rule revision. Rule revision is performed by comparing the inserted rules with the rules in the finite-state automata extracted from trained networks. The results from training a recurrent neural network to recognize a known non-trivial, randomly generated regular grammar show that not only do the networks preserve correct rules but that they are able to correct through training inserted rules which were initially incorrect. (By incorrect, we mean that the rules were not the ones in the randomly generated gra..
    corecore