5 research outputs found

    Computational fluid dynamics-based evaluation and optimisation of feed spacer design parameters for reverse osmosis membrane modules

    Get PDF
    This thesis provides insights into the impact of changing parameters on feed spacer performance, to look for possible trends and correlations, and to explain the observed patterns, in order to enhance the understanding of feed spacers in RO modules. Studies showed that selecting the best-performing spacer is not only related to the performance measure selected for comparison but is also affected by other operational parameters (flowrate and the concentration of salt in the feed)

    Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using Computational Fluid Dynamics

    Get PDF
    © 2016 Elsevier B.V.Reverse osmosis operations for water treatment are usually energy intensive and responsible for most of the product price. Several studies used flow characteristics to compare different geometries of feed spacers, but these cannot completely explain the effectiveness of feed spacers for promoting mass transfer near membranes. A few recent studies introduced a concept (Spacer Configuration Efficacy, SCE) combining mass transfer and energy consumption, but SCE has been applied only to a limited extent. The present study uses 3-dimensional steady state Computational Fluid Dynamics with mass transfer to compare four channels with feed spacer configurations (Ladder-type, Triple, Wavy and Submerged) and an empty plain channel using SCE and other performance measures. In contrast to previous studies, a saturated concentration boundary condition is employed at the membrane surface and optimised meshing of the domain is discussed. Power law correlations for SCE and other performance measures developed from the simulation results enable quick evaluation of the spacers. Results indicated that the assumed saturated solute concentration at the membrane strongly affects the mass transfer coefficient. Based on SCE, the Wavy spacer configuration showed the highest performance for Re>120 among the obstructed geometries considered, while Ladder-type was better for Re<120

    Studies into the mass transfer and energy consumption of commercial feed spacers for RO membrane modules using CFD: Effectiveness of performance measures

    Get PDF
    Different approaches have been reported in the literature that aim to improve the performance of reverse osmosis (RO) desalination plant operations, attempting to make the desalination process more efficient. This study investigates the performance of four commercial feed spacers for spiral wound reverse osmosis modules by considering energy consumption and production capacity, as well as their combination, through a previously proven approach to computational fluid dynamics (CFD) modelling. Among the performance measures studied, SCE (spacer configuration efficacy), SPC (specific power consumption) and Pn (power number) showed a high level of predictability (R2 = 0.998, 0.994 and 0.994, respectively) through power law correlations of Re with two spacer-dependent parameters. Of the four commercial spacers investigated, the DelStar Technologies Naltex N05013_90HDPE-NAT (“90 HDPE”) spacer has been ranked as the best or second best based on multiple performance measures over the flow range Re = 50–100. Furthermore, the very weak response to flowrate changes observed for 90 HDPE, based on pressure loss, SPC, Pn, Sh and SCE measures, indicates the prospects for energy savings. SPMP' a modified definition of SPMP (Spacer Performance Ratio), shows no consistent response to flow variations for the spacers studied
    corecore