1,336 research outputs found

    Magnetic Bose glass phases of coupled antiferromagnetic dimers with site dilution

    Full text link
    We numerically investigate the phase diagram of two-dimensional site-diluted coupled dimer systems in an external magnetic field. We show that this phase diagram is characterized by the presence of an extended Bose glass, not accessible to mean-field approximation, and stemming from the localization of two distinct species of bosonic quasiparticles appearing in the ground state. On the one hand, non-magnetic impurities doped into the dimer-singlet phase of a weakly coupled dimer system are known to free up local magnetic moments. The deviations of these local moments from full polarization along the field can be mapped onto a gas of bosonic quasiparticles, which undergo condensation in zero and very weak magnetic fields, corresponding to transverse long-range antiferromagnetic order. An increasing magnetic field lowers the density of such quasiparticles to a critical value at which a quantum phase transition occurs, corresponding to the quasiparticle localization on clusters of local magnets (dimers, trimers, etc.) and to the onset of a Bose glass. Strong finite-size quantum fluctuations hinder further depletion of quasiparticles from such clusters, and thus lead to the appearance of pseudo-plateaus in the magnetization curve of the system. On the other hand, site dilution hinders the field-induced Bose-Einstein condensation of triplet quasiparticles on the intact dimers, and it introduces instead a Bose glass of triplets. A thorough numerical investigation of the phase diagram for a planar system of coupled dimers shows that the two above-mentioned Bose glass phases are continuously connected, and they overlap in a finite region of parameter space, thus featuring a two-species Bose glass. The quantum phase transition from Bose glass to magnetic order in two dimensions is marked by novel universal exponents.Comment: 15 pages, 16 figure

    D3-D7 Holographic dual of a perturbed 3D CFT

    Full text link
    An appropriately oriented D3-D7-brane system is the holographic dual of relativistic Fermions occupying a 2+1-dimensional defect embedded in 3+1-dimensional spacetime. The Fermions interact via fields of N=4{\mathcal N}=4 Yang-Mills theory in the 3+1-dimensional bulk. Recently, using internal flux to stabilize the system in the probe N7<<N3N_7<<N_3 limit, a number of solutions which are dual to conformal field theories with Fermion content have been found. We use holographic techniques to study perturbations of a particular one of the conformal field theories by relevant operators. Generally, the response of a conformal field theory to such a perturbation grows and becomes nonperturbative at low energy scales. We shall find that a perturbation which switches on a background magnetic field BB and Fermion mass mm induces a renormalization group flow that can be studied perturbatively in the limit of small m2/Bm^2/B. We solve the leading order explicitly. We find that, for one particular value of internal flux, the system exhibits magnetic catalysis, the spontaneous breaking of chiral symmetry enhanced by the presence of the magnetic field. In the process, we derive formulae predicting the Debye screening length of the Fermion-antiFermion plasma at finite density and the diamagnetic moment of the ground state of the Fermion system in the presence of a magnetic field.Comment: 23 pages, two figures; typos corrected, some comments adde

    A Study of Effective Factors on the Behavioural Characteristics of Clayey Sands

    Get PDF
    As in recent years liquefaction phenomena have occurred in sandy soils containing different amounts of clay contents, it was concluded that in addition to silty sands, clayey sands are also vulnerable to liquefaction phenomenon. So, the urge for comprehensive study aroused to cover the issue. In this paper, the effect of clay content and its plasticity properties on behavioural characteristics of clayey sands under various density and confining pressure values have been investigated. To achieve the goal, about a hundred monotonic triaxial tests were performed on remoulded specimens of sandy soils containing different clay contents with different plasticity values. Based on the results, the latter factors affect peak strength, steady state strength, undrain brittleness and residual shear strength, considerably. Furthermore, great results obtained on the issue of whether clay content or plasticity properties variations is much effective

    A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind

    Get PDF
    AbstractIn this paper an iterative approach for obtaining approximate solutions for a class of nonlinear Fredholm integral equations of the second kind is proposed. The approach contains two steps: at the first one, we define a discretized form of the integral equation and prove that by considering some conditions on the kernel of the integral equation, solution of the discretized form converges to the exact solution of the problem. Following that, in the next step, solution of the discretized form is approximated by an iterative approach. We finally on some examples show the efficiency of the proposed approach

    Quantum Phase Transitions in Coupled Dimer Compounds

    Full text link
    We study the critical properties in cubic systems of antiferromagnetically coupled spin dimers near magnetic-field induced quantum phase transitions. The quantum critical points in the zero-temperature phase diagrams are determined from quantum Monte Carlo simulations. Furthermore, scaling properties of the uniform magnetization and the staggered transverse magnetization across the quantum phase transition in magnetic fields are calculated. The critical exponents are derived from Ginzburg-Landau theory. We find excellent agreement between the quantum Monte Carlo simulations and the analytical results.Comment: 7 pages, 9 eps-figure

    Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array

    Get PDF
    Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed “trauma risk” rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general
    corecore